Suppr超能文献

功能近红外光谱信号质量的研究及血流动力学相位相关信号的开发。

Investigation of functional near-infrared spectroscopy signal quality and development of the hemodynamic phase correlation signal.

作者信息

Hakim Uzair, Pinti Paola, Noah Adam J, Zhang Xian, Burgess Paul, Hamilton Antonia, Hirsch Joy, Tachtsidis Ilias

机构信息

University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom.

University of London, Birkbeck College, Centre for Brain and Cognitive Development, London, United Kingdom.

出版信息

Neurophotonics. 2022 Apr;9(2):025001. doi: 10.1117/1.NPh.9.2.025001. Epub 2022 May 18.

Abstract

There is a longstanding recommendation within the field of fNIRS to use oxygenated ( ) and deoxygenated (HHb) hemoglobin when analyzing and interpreting results. Despite this, many fNIRS studies do focus on only. Previous work has shown that on its own is susceptible to systemic interference and results may mostly reflect that rather than functional activation. Studies using both and HHb to draw their conclusions do so with varying methods and can lead to discrepancies between studies. The combination of and HHb has been recommended as a method to utilize both signals in analysis. We present the development of the hemodynamic phase correlation (HPC) signal to combine and HHb as recommended to utilize both signals in the analysis. We use synthetic and experimental data to evaluate how the HPC and current signals used for fNIRS analysis compare. About 18 synthetic datasets were formed using resting-state fNIRS data acquired from 16 channels over the frontal lobe. To simulate fNIRS data for a block-design task, we superimposed a synthetic task-related hemodynamic response to the resting state data. This data was used to develop an HPC-general linear model (GLM) framework. Experiments were conducted to investigate the performance of each signal at different SNR and to investigate the effect of false positives on the data. Performance was based on each signal's mean -value across channels. Experimental data recorded from 128 participants across 134 channels during a finger-tapping task were used to investigate the performance of multiple signals [ , HHb, HbT, HbD, correlation-based signal improvement (CBSI), and HPC] on real data. Signal performance was evaluated on its ability to localize activation to a specific region of interest. Results from varying the SNR show that the HPC signal has the highest performance for high SNRs. The CBSI performed the best for medium-low SNR. The next analysis evaluated how false positives affect the signals. The analyses evaluating the effect of false positives showed that the HPC and CBSI signals reflect the effect of false positives on and HHb. The analysis of real experimental data revealed that the HPC and HHb signals provide localization to the primary motor cortex with the highest accuracy. We developed a new hemodynamic signal (HPC) with the potential to overcome the current limitations of using and HHb separately. Our results suggest that the HPC signal provides comparable accuracy to HHb to localize functional activation while at the same time being more robust against false positives.

摘要

在功能近红外光谱(fNIRS)领域,长期以来一直建议在分析和解释结果时使用氧合血红蛋白( )和脱氧血红蛋白(HHb)。尽管如此,许多fNIRS研究仅关注 。先前的研究表明,仅使用 容易受到全身干扰,其结果可能主要反映的是这种干扰而非功能激活。使用 和HHb两者来得出结论的研究采用的方法各不相同,可能导致研究之间出现差异。有人建议将 和HHb结合起来作为一种在分析中利用两种信号的方法。我们提出了血流动力学相位相关性(HPC)信号的开发方法,按照建议将 和HHb结合起来,以便在分析中利用两种信号。我们使用合成数据和实验数据来评估HPC信号与当前用于fNIRS分析的信号相比表现如何。利用从额叶16个通道采集的静息态fNIRS数据形成了约18个合成数据集。为了模拟用于块设计任务的fNIRS数据,我们将与任务相关的合成血流动力学响应叠加到静息态数据上。这些数据被用于开发一个HPC通用线性模型(GLM)框架。进行了实验,以研究每个信号在不同信噪比(SNR)下的性能,并研究误报对数据的影响。性能基于每个信号在各通道上的平均 值。在一项手指敲击任务中,从128名参与者的134个通道记录的实验数据被用于研究多个信号[ 、HHb、总血红蛋白(HbT)、差值血红蛋白(HbD)、基于相关性的信号改进(CBSI)和HPC]在真实数据上的性能。根据信号将激活定位到特定感兴趣区域的能力来评估信号性能。改变SNR的结果表明,HPC信号在高SNR时性能最高。CBSI在中低SNR时表现最佳。接下来的分析评估了误报如何影响信号。评估误报影响的分析表明,HPC和CBSI信号反映了误报对 和HHb的影响。对真实实验数据的分析表明,HPC和HHb信号以最高的准确性将激活定位到初级运动皮层。我们开发了一种新的血流动力学信号(HPC),有可能克服目前单独使用 和HHb的局限性。我们的结果表明,HPC信号在定位功能激活方面提供了与HHb相当的准确性,同时对误报更具鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcef/9116886/1d22f9cb0a6e/NPh-009-025001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验