Ortega-Martinez Antonio, Rogers De'Ja, Anderson Jessica, Farzam Parya, Gao Yuanyuan, Zimmermann Bernhard, Yücel Meryem A, Boas David A
Boston University Neurophotonics Center, Boston, Massachusetts, United States.
Neurophotonics. 2023 Jan;10(1):013504. doi: 10.1117/1.NPh.10.1.013504. Epub 2022 Oct 22.
Advances in electronics have allowed the recent development of compact, high channel count time domain functional near-infrared spectroscopy (TD-fNIRS) systems. Temporal moment analysis has been proposed for increased brain sensitivity due to the depth selectivity of higher order temporal moments. We propose a general linear model (GLM) incorporating TD moment data and auxiliary physiological measurements, such as short separation channels, to improve the recovery of the HRF.
We compare the performance of previously reported multi-distance TD moment techniques to commonly used techniques for continuous wave (CW) fNIRS hemodynamic response function (HRF) recovery, namely block averaging and CW GLM. Additionally, we compare the multi-distance TD moment technique to TD moment GLM.
We augmented resting TD-fNIRS moment data (six subjects) with known synthetic HRFs. We then employed block averaging and GLM techniques with "short-separation regression" designed both for CW and TD to recover the HRFs. We calculated the root mean square error (RMSE) and the correlation of the recovered HRF to the ground truth. We compared the performance of equivalent CW and TD techniques with paired t-tests.
We found that, on average, TD moment HRF recovery improves correlations by 98% and 48% for HbO and HbR respectively, over CW GLM. The improvement on the correlation for TD GLM over TD moment is 12% (HbO) and 27% (HbR). RMSE decreases 56% and 52% (HbO and HbR) for TD moment compared to CW GLM. We found no statistically significant improvement in the RMSE for TD GLM compared to TD moment.
Properly covariance-scaled TD moment techniques outperform their CW equivalents in both RMSE and correlation in the recovery of the synthetic HRFs. Furthermore, our proposed TD GLM based on moments outperforms regular TD moment analysis, while allowing the incorporation of auxiliary measurements of the confounding physiological signals from the scalp.
电子技术的进步使得近期紧凑、高通道数的时域功能近红外光谱(TD - fNIRS)系统得以发展。由于高阶时间矩的深度选择性,人们提出了时间矩分析以提高大脑的灵敏度。我们提出了一种通用线性模型(GLM),它结合了TD矩数据和辅助生理测量,如短间隔通道,以改善血流动力学响应函数(HRF)的恢复。
我们将先前报道的多距离TD矩技术的性能与连续波(CW)fNIRS血流动力学响应函数(HRF)恢复的常用技术,即块平均和CW GLM进行比较。此外,我们将多距离TD矩技术与TD矩GLM进行比较。
我们用已知的合成HRF增强静息TD - fNIRS矩数据(6名受试者)。然后我们采用块平均和GLM技术以及为CW和TD设计的“短间隔回归”来恢复HRF。我们计算了均方根误差(RMSE)以及恢复的HRF与真实值之间的相关性。我们用配对t检验比较了等效的CW和TD技术的性能。
我们发现,平均而言,与CW GLM相比,TD矩HRF恢复在HbO和HbR方面分别将相关性提高了98%和48%。TD GLM相对于TD矩在相关性上的提高分别为12%(HbO)和27%(HbR)。与CW GLM相比,TD矩的RMSE降低了56%和52%(HbO和HbR)。我们发现与TD矩相比,TD GLM的RMSE没有统计学上的显著改善。
在合成HRF的恢复中,经过适当协方差缩放的TD矩技术在RMSE和相关性方面均优于其CW等效技术。此外,我们提出的基于矩的TD GLM优于常规的TD矩分析,同时允许纳入来自头皮的混杂生理信号的辅助测量。