Suppr超能文献

考虑连锁不平衡的基于基因检测方法的比较

A Comparison of Methods for Gene-Based Testing That Account for Linkage Disequilibrium.

作者信息

Cinar Ozan, Viechtbauer Wolfgang

机构信息

Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands.

出版信息

Front Genet. 2022 May 5;13:867724. doi: 10.3389/fgene.2022.867724. eCollection 2022.

Abstract

Controlling the type I error rate while retaining sufficient power is a major concern in genome-wide association studies, which nowadays often examine more than a million single-nucleotide polymorphisms (SNPs) simultaneously. Methods such as the Bonferroni correction can lead to a considerable decrease in power due to the large number of tests conducted. Shifting the focus to higher functional structures (e.g., genes) can reduce the loss of power. This can be accomplished via the combination of -values of SNPs that belong to the same structural unit to test their joint null hypothesis. However, standard methods for this purpose (e.g., Fisher's method) do not account for the dependence among the tests due to linkage disequilibrium (LD). In this paper, we review various adjustments to methods for combining -values that take LD information explicitly into consideration and evaluate their performance in a simulation study based on data from the HapMap project. The results illustrate the importance of incorporating LD information into the methods for controlling the type I error rate at the desired level. Furthermore, some methods are more successful in controlling the type I error rate than others. Among them, Brown's method was the most robust technique with respect to the characteristics of the genes and outperformed the Bonferroni method in terms of power in many scenarios. Examining the genetic factors of a phenotype of interest at the gene-rather than SNP-level can provide researchers benefits in terms of the power of the study. While doing so, one should be careful to account for LD in SNPs belonging to the same gene, for which Brown's method seems the most robust technique.

摘要

在全基因组关联研究中,在控制I型错误率的同时保持足够的检验效能是一个主要问题,如今这类研究常常同时检测超过一百万个单核苷酸多态性(SNP)。诸如Bonferroni校正等方法,由于进行的检验数量众多,可能会导致检验效能大幅下降。将重点转移到更高层次的功能结构(如基因)上可以减少检验效能的损失。这可以通过合并属于同一结构单元的SNP的P值来检验它们的联合原假设来实现。然而,为此目的的标准方法(如Fisher方法)没有考虑到由于连锁不平衡(LD)导致的检验之间的依赖性。在本文中,我们回顾了各种对合并P值方法的调整,这些调整明确考虑了LD信息,并在基于HapMap项目数据的模拟研究中评估了它们的性能。结果说明了将LD信息纳入控制I型错误率至期望水平的方法的重要性。此外,一些方法在控制I型错误率方面比其他方法更成功。其中,Brown方法在基因特征方面是最稳健的技术,并且在许多情况下在检验效能方面优于Bonferroni方法。在基因水平而非SNP水平上研究感兴趣表型的遗传因素,在研究效能方面可以为研究人员带来益处。在这样做时,应该注意考虑属于同一基因的SNP中的LD,对此Brown方法似乎是最稳健的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cf1/9117705/f38744786856/fgene-13-867724-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验