文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

饮食和宿主基因驱动金头鲷的细菌和真菌肠道元转录组

Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea Bream.

作者信息

Naya-Català Fernando, Piazzon M Carla, Calduch-Giner Josep A, Sitjà-Bobadilla Ariadna, Pérez-Sánchez Jaume

机构信息

Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain.

Fish Pathology Group, Institute of Aquaculture Torre de la Sal Spanish National Research Council (IATS-CSIC), Valencia, Spain.

出版信息

Front Microbiol. 2022 May 6;13:883738. doi: 10.3389/fmicb.2022.883738. eCollection 2022.


DOI:10.3389/fmicb.2022.883738
PMID:35602034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9121002/
Abstract

The gut microbiota is now recognised as a key target for improving aquaculture profit and sustainability, but we still lack insights into the activity of microbes in fish mucosal surfaces. In the present study, a metatranscriptomic approach was used to reveal the expression of gut microbial genes in the farmed gilthead sea bream. Archaeal and viral transcripts were a minority but, interestingly and contrary to rRNA amplicon-based studies, fungal transcripts were as abundant as bacterial ones, and increased in fish fed a plant-enriched diet. This dietary intervention also drove a differential metatranscriptome in fish selected for fast and slow growth. Such differential response reinforced the results of previously inferred metabolic pathways, enlarging, at the same time, the catalogue of microbial functions in the intestine. Accordingly, vitamin and amino acid metabolism, and rhythmic and symbiotic processes were mostly shaped by bacteria, whereas fungi were more specifically configuring the host immune, digestive, or endocrine processes.

摘要

肠道微生物群现在被认为是提高水产养殖利润和可持续性的关键目标,但我们仍然缺乏对鱼类粘膜表面微生物活性的深入了解。在本研究中,采用宏转录组学方法揭示养殖金头鲷肠道微生物基因的表达。古菌和病毒转录本占少数,但有趣的是,与基于rRNA扩增子的研究相反,真菌转录本与细菌转录本一样丰富,并且在喂食富含植物的饲料的鱼类中增加。这种饮食干预还在选择用于快速和缓慢生长的鱼类中驱动了差异宏转录组。这种差异反应强化了先前推断的代谢途径的结果,同时扩大了肠道微生物功能的目录。因此,维生素和氨基酸代谢以及节律和共生过程主要由细菌塑造,而真菌则更具体地构建宿主免疫、消化或内分泌过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/d290f6c309b5/fmicb-13-883738-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/6ce4e638eddd/fmicb-13-883738-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/17606b9240ab/fmicb-13-883738-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/efa16b34dbe0/fmicb-13-883738-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/d660cfaf10ab/fmicb-13-883738-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/c458c7bddf0d/fmicb-13-883738-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/d290f6c309b5/fmicb-13-883738-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/6ce4e638eddd/fmicb-13-883738-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/17606b9240ab/fmicb-13-883738-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/efa16b34dbe0/fmicb-13-883738-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/d660cfaf10ab/fmicb-13-883738-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/c458c7bddf0d/fmicb-13-883738-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edcb/9121002/d290f6c309b5/fmicb-13-883738-g006.jpg

相似文献

[1]
Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea Bream.

Front Microbiol. 2022-5-6

[2]
Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream.

Microbiome. 2020-11-23

[3]
Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome.

BMC Vet Res. 2020-4-22

[4]
Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream () Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization.

Front Physiol. 2021-10-5

[5]
Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream () Production Cycle.

Biology (Basel). 2022-11-30

[6]
Effect of short chain fructooligosaccharides (scFOS) on immunological status and gut microbiota of gilthead sea bream (Sparus aurata) reared at two temperatures.

Fish Shellfish Immunol. 2016-2

[7]
Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings.

J Anim Sci. 2015-1

[8]
Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles.

Fish Physiol Biochem. 2019-4

[9]
Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets.

Microbiome. 2017-12-28

[10]
Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish.

Front Microbiol. 2019-10-31

引用本文的文献

[1]
Moving Beyond Oxford Nanopore Standard Procedures: New Insights from Water and Multiple Fish Microbiomes.

Int J Mol Sci. 2024-11-23

[2]
Differential Reshaping of Skin and Intestinal Microbiota by Stocking Density and Oxygen Availability in Farmed Gilthead Sea Bream (): A Behavioral and Network-Based Integrative Approach.

Microorganisms. 2024-7-2

[3]
A Prebiotic Diet Containing Galactooligosaccharides and Polydextrose Produces Dynamic and Reproducible Changes in the Gut Microbial Ecosystem in Male Rats.

Nutrients. 2024-6-6

[4]
Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background.

BMC Genomics. 2023-11-7

[5]
Effects of plant-derived protein and rapeseed oil on growth performance and gut microbiomes in rainbow trout.

BMC Microbiol. 2023-9-13

[6]
SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach.

Genes (Basel). 2023-8-19

[7]
Microbiomes in the context of developing sustainable intensified aquaculture.

Front Microbiol. 2023-6-23

[8]
Use of male-to-female sex reversal as a welfare scoring system in the protandrous farmed gilthead sea bream ().

Front Vet Sci. 2023-1-9

[9]
Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream () Production Cycle.

Biology (Basel). 2022-11-30

本文引用的文献

[1]
Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Juveniles Fed Yeast and Microalga Derived β-glucans.

Mar Drugs. 2021-11-23

[2]
Effects of Glutathione on Growth, Intestinal Antioxidant Capacity, Histology, Gene Expression, and Microbiota of Juvenile Triploid .

Front Physiol. 2021-11-29

[3]
Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream () Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization.

Front Physiol. 2021-10-5

[4]
The Use of Defatted Larvae Meal as a Main Protein Source Is Supported in European Sea Bass () by Data on Growth Performance, Lipid Metabolism, and Flesh Quality.

Front Physiol. 2021-4-15

[5]
Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet.

Cell Metab. 2021-5-4

[6]
Influence of Genetic Selection for Growth and Broodstock Diet n-3 LC-PUFA Levels on Reproductive Performance of Gilthead Seabream, .

Animals (Basel). 2021-2-17

[7]
Virome composition in marine fish revealed by meta-transcriptomics.

Virus Evol. 2021-2-4

[8]
Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease.

Infect Immun. 2021-3-17

[9]
Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream.

Microbiome. 2020-11-23

[10]
Effects of genetics and early-life mild hypoxia on size variation in farmed gilthead sea bream (Sparus aurata).

Fish Physiol Biochem. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索