Domingo-Bretón Ricardo, Moroni Federico, Toxqui-Rodríguez Socorro, Belenguer Álvaro, Piazzon M Carla, Pérez-Sánchez Jaume, Naya-Català Fernando
Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
Int J Mol Sci. 2024 Nov 23;25(23):12603. doi: 10.3390/ijms252312603.
Oxford Nanopore Technology (ONT) allows for the rapid profiling of aquaculture microbiomes. However, not all the experimental and downstream methodological possibilities have been benchmarked. Here, we aimed to offer novel insights into the use of different library preparation methods (standard-RAP and native barcoding-LIG), primers (V3-V4, V1-V3, and V1-V9), and basecalling models (fast-FAST, high-HAC, and super-accuracy-SUP) implemented in ONT to elucidate the microbiota associated with the aquatic environment and farmed fish, including faeces, skin, and intestinal mucus. Microbial DNA from water and faeces samples could be amplified regardless of the library-primer strategy, but only with LIG and V1-V3/V1-V9 primers in the case of skin and intestine mucus. Low taxonomic assignment levels were favoured by the use of full-length V1-V9 primers, though in silico hybridisation revealed a lower number of potential matching sequences in the SILVA database, especially evident with the increase in Actinobacteriota in real datasets. SUP execution allowed for a higher median Phred quality (24) than FAST (11) and HAC (17), but its execution time (6-8 h) was higher in comparison to the other models (0.6-7 h). Altogether, we optimised the use of ONT for water- and fish-related microbial analyses, validating, for the first time, the use of the LIG strategy. We consider that LIG-V1-V9-HAC is the optimal time/cost-effective option to amplify the microbial DNA from environmental samples. However, the use of V1-V3 could help to maximise the dataset microbiome diversity, representing an alternative when long amplicon sequences become compromised by microbial DNA quality and/or high host DNA loads interfere with the PCR amplification/sequencing procedures, especially in the case of gut mucus.
牛津纳米孔技术(ONT)可实现水产养殖微生物群落的快速分析。然而,并非所有的实验和下游方法学可能性都经过了基准测试。在这里,我们旨在为ONT中实施的不同文库制备方法(标准-RAP和原生条形码-LIG)、引物(V3-V4、V1-V3和V1-V9)以及碱基识别模型(快速-FAST、高-HAC和超准确性-SUP)的使用提供新见解,以阐明与水生环境和养殖鱼类相关的微生物群,包括粪便、皮肤和肠道黏液。无论文库-引物策略如何,水和粪便样本中的微生物DNA都可以扩增,但皮肤和肠道黏液样本仅在使用LIG和V1-V3/V1-V9引物时才能扩增。使用全长V1-V9引物有利于较低的分类学注释水平,尽管计算机杂交显示SILVA数据库中的潜在匹配序列数量较少,在实际数据集中随着放线菌门数量的增加尤为明显。与FAST(11)和HAC(17)相比,SUP执行的中位Phred质量更高(24),但其执行时间(6-8小时)比其他模型(0.6-7小时)更长。总之,我们优化了ONT在水和鱼类相关微生物分析中的使用,首次验证了LIG策略的使用。我们认为LIG-V1-V9-HAC是从环境样本中扩增微生物DNA的最佳时间/成本效益选择。然而,V1-V3的使用有助于最大化数据集微生物群落的多样性,当长扩增子序列因微生物DNA质量受损和/或高宿主DNA负荷干扰PCR扩增/测序程序时,尤其是在肠道黏液的情况下,它是一种替代选择。