Suppr超能文献

基于机器学习的乳腺癌筛查钼靶 X 线摄影诊断:系统评价和荟萃分析。

Mammography diagnosis of breast cancer screening through machine learning: a systematic review and meta-analysis.

机构信息

School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.

College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China.

出版信息

Clin Exp Med. 2023 Oct;23(6):2341-2356. doi: 10.1007/s10238-022-00895-0. Epub 2022 Oct 15.

Abstract

Breast cancer was the fourth leading cause of cancer-related death worldwide, and early mammography screening could decrease the breast cancer mortality. Artificial intelligence (AI)-assisted diagnose system based on machine learning (ML) methods can help improve the screening accuracy and efficacy. This study aimed to systematically review and make a meta-analysis on the diagnostic accuracy of mammography diagnosis of breast cancer through various ML methods. Springer Link, Science Direct (Elsevier), IEEE Xplore, PubMed and Web of Science were searched for relevant studies published from January 2000 to September 2021. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42021284227). A Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess the included studies, and reporting was evaluated using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The pooled summary estimates for sensitivity, specificity, the area under the receiver operating characteristic curve (AUC) for three ML methods (convolutional neural network [CNN], artificial neural network [ANN], support vector machine [SVM]) were calculated. A total of 32 studies with 23,804 images were included in the meta-analysis. The overall pooled estimate for sensitivity, specificity and AUC was 0.914 [95% CI 0.868-0.945], 0.916 [95% CI 0.873-0.945] and 0.945 for mammography diagnosis of breast cancer through three ML methods. The pooled sensitivity, specificity and AUC of CNN were 0.961 [95% CI 0.886-0.988], 0.950 [95% CI 0.924-0.967] and 0.974. The pooled sensitivity, specificity and AUC of ANN were 0.837 [95% CI 0.772-0.886], 0.894 [95% CI 0.764-0.957] and 0.881. The pooled sensitivity, specificity and AUC of SVM were 0.889 [95% CI 0.807-0.939], 0.843 [95% CI 0.724-0.916] and 0.913. Machine learning methods (especially CNN) show excellent performance in mammography diagnosis of breast cancer screening based on retrospective studies. More rigorous prospective studies are needed to evaluate the longitudinal performance of AI.

摘要

乳腺癌是全球第四大癌症相关死亡原因,早期乳房 X 线摄影筛查可以降低乳腺癌死亡率。基于机器学习 (ML) 方法的人工智能 (AI) 辅助诊断系统可以帮助提高筛查的准确性和效果。本研究旨在系统回顾并对通过各种 ML 方法进行乳腺癌乳房 X 线摄影诊断的诊断准确性进行荟萃分析。Springer Link、Science Direct(Elsevier)、IEEE Xplore、PubMed 和 Web of Science 搜索了 2000 年 1 月至 2021 年 9 月发表的相关研究。该研究在 PROSPERO 国际前瞻性系统评价注册中心(注册号:CRD42021284227)进行了注册。使用诊断准确性研究的质量评估 2(QUADAS-2)对纳入的研究进行评估,并使用系统评价和荟萃分析的首选报告项目(PRISMA)评估报告。计算了三种 ML 方法(卷积神经网络 [CNN]、人工神经网络 [ANN]、支持向量机 [SVM])的敏感性、特异性和接收者操作特征曲线下面积(AUC)的汇总综合估计值。荟萃分析共纳入 32 项研究,共 23804 张图像。三种 ML 方法(CNN、ANN 和 SVM)进行乳腺癌乳房 X 线摄影诊断的总体汇总估计值为敏感性 0.914[95%CI 0.868-0.945]、特异性 0.916[95%CI 0.873-0.945]和 AUC 0.945。CNN 的汇总敏感性、特异性和 AUC 分别为 0.961[95%CI 0.886-0.988]、0.950[95%CI 0.924-0.967]和 0.974。ANN 的汇总敏感性、特异性和 AUC 分别为 0.837[95%CI 0.772-0.886]、0.894[95%CI 0.764-0.957]和 0.881。SVM 的汇总敏感性、特异性和 AUC 分别为 0.889[95%CI 0.807-0.939]、0.843[95%CI 0.724-0.916]和 0.913。基于回顾性研究,机器学习方法(尤其是 CNN)在乳腺癌乳房 X 线摄影筛查诊断中表现出优异的性能。需要更多严格的前瞻性研究来评估 AI 的纵向性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验