Suppr超能文献

定向谱测度改进神经群体的潜在网络模型。

Directed Spectral Measures Improve Latent Network Models Of Neural Populations.

作者信息

Gallagher Neil M, Dzirasa Kafui, Carlson David

机构信息

Department of Neurobiology, Duke University, Durham, NC 27708.

Howard Hughes Medical Institute, Department of Psychiatry and Behavioral Sciences, Department of Neurobiology, Duke University, Durham, NC 27710.

出版信息

Adv Neural Inf Process Syst. 2021 Dec;34:7421-7435.

Abstract

Systems neuroscience aims to understand how networks of neurons distributed throughout the brain mediate computational tasks. One popular approach to identify those networks is to first calculate measures of neural activity (e.g. power spectra) from multiple brain regions, and then apply a linear factor model to those measures. Critically, despite the established role of directed communication between brain regions in neural computation, measures of directed communication have been rarely utilized in network estimation because they are incompatible with the implicit assumptions of the linear factor model approach. Here, we develop a novel spectral measure of directed communication called the Directed Spectrum (DS). We prove that it is compatible with the implicit assumptions of linear factor models, and we provide a method to estimate the DS. We demonstrate that latent linear factor models of DS measures better capture underlying brain networks in both simulated and real neural recording data compared to available alternatives. Thus, linear factor models of the Directed Spectrum offer neuroscientists a simple and effective way to explicitly model directed communication in networks of neural populations.

摘要

系统神经科学旨在了解遍布大脑的神经元网络如何介导计算任务。一种识别这些网络的常用方法是首先从多个脑区计算神经活动的指标(例如功率谱),然后将线性因子模型应用于这些指标。至关重要的是,尽管脑区之间的定向通信在神经计算中已确立了作用,但定向通信的指标很少用于网络估计,因为它们与线性因子模型方法的隐含假设不兼容。在此,我们开发了一种称为定向谱(DS)的新型定向通信谱测量方法。我们证明它与线性因子模型的隐含假设兼容,并提供了一种估计DS的方法。我们证明,与现有替代方法相比,DS测量的潜在线性因子模型在模拟和真实神经记录数据中都能更好地捕捉潜在的脑网络。因此,定向谱的线性因子模型为神经科学家提供了一种简单有效的方法,可在神经群体网络中明确模拟定向通信。

相似文献

5
Goal-Directed Decision Making with Spiking Neurons.
J Neurosci. 2016 Feb 3;36(5):1529-46. doi: 10.1523/JNEUROSCI.2854-15.2016.
6
Estimating the directed information to infer causal relationships in ensemble neural spike train recordings.
J Comput Neurosci. 2011 Feb;30(1):17-44. doi: 10.1007/s10827-010-0247-2. Epub 2010 Jun 26.
7
Estimating Mixed Memberships in Directed Networks by Spectral Clustering.
Entropy (Basel). 2023 Feb 13;25(2):345. doi: 10.3390/e25020345.
8
Inferring neuronal network functional connectivity with directed information.
J Neurophysiol. 2017 Aug 1;118(2):1055-1069. doi: 10.1152/jn.00086.2017. Epub 2017 May 3.
9
Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks.
IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):857-866. doi: 10.1109/TNSRE.2019.2908156. Epub 2019 Mar 28.
10
Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
Sensors (Basel). 2023 Sep 6;23(18):7701. doi: 10.3390/s23187701.

引用本文的文献

3
Electome network factors: Capturing emotional brain networks related to health and disease.
Cell Rep Methods. 2024 Jan 22;4(1):100691. doi: 10.1016/j.crmeth.2023.100691. Epub 2024 Jan 11.
4
Brain-wide electrical dynamics encode individual appetitive social behavior.
Neuron. 2022 May 18;110(10):1728-1741.e7. doi: 10.1016/j.neuron.2022.02.016. Epub 2022 Mar 15.
5
Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability.
Cell. 2018 Mar 22;173(1):166-180.e14. doi: 10.1016/j.cell.2018.02.012.

本文引用的文献

1
Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings.
Adv Neural Inf Process Syst. 2020 Dec;33:16446-16456.
2
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
3
Discovering hierarchical common brain networks via multimodal deep belief network.
Med Image Anal. 2019 May;54:238-252. doi: 10.1016/j.media.2019.03.011. Epub 2019 Mar 29.
4
Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis.
Neuron. 2018 Jun 27;98(6):1099-1115.e8. doi: 10.1016/j.neuron.2018.05.015. Epub 2018 Jun 7.
5
Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability.
Cell. 2018 Mar 22;173(1):166-180.e14. doi: 10.1016/j.cell.2018.02.012.
6
A Shared Vision for Machine Learning in Neuroscience.
J Neurosci. 2018 Feb 14;38(7):1601-1607. doi: 10.1523/JNEUROSCI.0508-17.2018. Epub 2018 Jan 26.
7
Dynamically Timed Stimulation of Corticolimbic Circuitry Activates a Stress-Compensatory Pathway.
Biol Psychiatry. 2017 Dec 15;82(12):904-913. doi: 10.1016/j.biopsych.2017.06.008. Epub 2017 Jun 15.
8
From regions to connections and networks: new bridges between brain and behavior.
Curr Opin Neurobiol. 2016 Oct;40:1-7. doi: 10.1016/j.conb.2016.05.003. Epub 2016 May 19.
9
A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls.
Front Syst Neurosci. 2016 Jan 8;9:175. doi: 10.3389/fnsys.2015.00175. eCollection 2015.
10
Long-range neural synchrony in behavior.
Annu Rev Neurosci. 2015 Jul 8;38:171-94. doi: 10.1146/annurev-neuro-071714-034111. Epub 2015 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验