Sánchez-Grande Ana, de la Torre Bruno, Santos José, Cirera Borja, Lauwaet Koen, Chutora Taras, Edalatmanesh Shayan, Mutombo Pingo, Rosen Johanna, Zbořil Radek, Miranda Rodolfo, Björk Jonas, Jelínek Pavel, Martín Nazario, Écija David
IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
Angew Chem Int Ed Engl. 2019 May 13;58(20):6559-6563. doi: 10.1002/anie.201814154. Epub 2019 Mar 12.
Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.
设计低带隙π共轭聚合物是基础研究和应用研究中一个不断发展的领域。主要的合成挑战在于起始材料的溶解性,这阻碍了该领域的进展。在此,我们报告一种表面合成方案,以克服此类困难,并在Au(111)上制备聚(对蒽乙炔)分子线。为此,沉积具有=CBr基团的醌型蒽前体并将其退火至400 K,从而得到基于蒽的聚合物。高分辨率非接触式原子力显微镜测量证实了蒽部分之间乙炔桥键的性质。理论模拟阐明了化学反应的机制,突出了三个主要步骤:脱卤、表面稳定卡宾的扩散和均偶联,这使得能够形成乙炔桥。我们的结果引入了一种基于低聚并苯前体设计π共轭聚合物的新型化学方案,并为推进表面合成这一新兴领域开辟了新途径。