Suppr超能文献

具有锯齿形边缘的菱形纳米石墨烯中的大磁交换耦合。

Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery.

作者信息

Mishra Shantanu, Yao Xuelin, Chen Qiang, Eimre Kristjan, Gröning Oliver, Ortiz Ricardo, Di Giovannantonio Marco, Sancho-García Juan Carlos, Fernández-Rossier Joaquín, Pignedoli Carlo A, Müllen Klaus, Ruffieux Pascal, Narita Akimitsu, Fasel Roman

机构信息

nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.

Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany.

出版信息

Nat Chem. 2021 Jun;13(6):581-586. doi: 10.1038/s41557-021-00678-2. Epub 2021 May 10.

Abstract

Nanographenes with zigzag edges are predicted to manifest non-trivial π-magnetism resulting from the interplay of concurrent electronic effects, such as hybridization of localized frontier states and Coulomb repulsion between valence electrons. This provides a chemically tunable platform to explore quantum magnetism at the nanoscale and opens avenues towards organic spintronics. The magnetic stability in nanographenes is thus far greatly limited by the weak magnetic exchange coupling, which remains below the room-temperature thermal energy. Here, we report the synthesis of large rhombus-shaped nanographenes with zigzag peripheries on gold and copper surfaces. Single-molecule scanning probe measurements show an emergent magnetic spin singlet ground state with increasing nanographene size. The magnetic exchange coupling in the largest nanographene (CH, containing five benzenoid rings along each edge), determined by inelastic electron tunnelling spectroscopy, exceeds 100 meV or 1,160 K, which outclasses most inorganic nanomaterials and survives on a metal electrode.

摘要

据预测,具有锯齿形边缘的纳米石墨烯会表现出非平凡的π磁性,这是由并发电子效应的相互作用导致的,如局域前沿态的杂化和价电子之间的库仑排斥。这为在纳米尺度上探索量子磁性提供了一个化学可调平台,并为有机自旋电子学开辟了道路。迄今为止,纳米石墨烯中的磁稳定性受到弱磁交换耦合的极大限制,该耦合仍低于室温热能。在此,我们报告了在金和铜表面合成具有锯齿形边缘的大菱形纳米石墨烯。单分子扫描探针测量表明,随着纳米石墨烯尺寸的增加,出现了磁自旋单重基态。通过非弹性电子隧穿光谱确定,最大的纳米石墨烯(CH,每条边缘包含五个苯环)中的磁交换耦合超过100毫电子伏特或1160开尔文,这超过了大多数无机纳米材料,并且在金属电极上依然存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验