Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile.
Instituto de Ecología y Biodiversidad (IEB), Santiago 8320000, Chile.
Tree Physiol. 2022 Oct 7;42(10):1957-1974. doi: 10.1093/treephys/tpac057.
The study of ancient species provides valuable information concerning the evolution of specific adaptations to past and current environmental conditions. Araucaria araucana (Molina) K. Koch belongs to one of the oldest families of conifers in the world, but despite this, there are few studies focused on its physiology and responses to changes in environmental conditions. We used an integrated approach aimed at comprehensively characterizing the ecophysiology of this poorly known species, focusing in its stomatal, mesophyll and biochemical traits, hypothesizing that these traits govern the carbon assimilation of A. araucana under past and present levels of atmospheric CO2. Results indicated that A. araucana presents the typical traits of an ancient species, such as large stomata and low stomatal density, which trigger low stomatal conductance and slow stomatal responsiveness to changing environmental conditions. Interestingly, the quantitative analysis showed that photosynthetic rates were equally limited by both diffusive and biochemical components. The Rubisco catalytic properties proved to have a low Rubisco affinity for CO2 and O2, similar to other ancient species. This affinity for CO2, together with the low carboxylation turnover rate, are responsible for the low Rubisco catalytic efficiency of carboxylation. These traits could be the result of the diverse environmental selective pressures that A. araucana was exposed during its diversification. The increase in measured temperatures induced an increase in stomatal and biochemical limitations, which together with a lower Rubisco affinity for CO2 could explain the low photosynthetic capacity of A. araucana in warmer conditions.
对古生物种的研究为特定适应过去和当前环境条件的进化提供了有价值的信息。南洋杉属(Molina)K. Koch 属于世界上最古老的松柏科之一,但尽管如此,针对其生理学以及对环境条件变化的反应的研究却很少。我们采用了一种综合方法,旨在全面描述该物种的生态生理学特性,重点研究其气孔、叶肉和生化特性,假设这些特性控制了南洋杉在过去和现在大气 CO2 水平下的碳同化。结果表明,南洋杉具有典型的古老物种特征,如大的气孔和低的气孔密度,这会导致低的气孔导度和对环境变化的缓慢气孔响应。有趣的是,定量分析表明,光合速率同样受到扩散和生化因素的限制。Rubisco 催化特性证明其对 CO2 和 O2 的亲和力较低,与其他古老物种相似。这种对 CO2 的亲和力,加上羧化周转率低,是导致 Rubisco 羧化催化效率低的原因。这些特征可能是南洋杉在多样化过程中受到的各种环境选择性压力的结果。测量温度的升高导致气孔和生化限制的增加,再加上对 CO2 的亲和力较低,这可能解释了在较温暖条件下南洋杉较低的光合能力。