Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin.
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.
Mol Cancer Res. 2022 Sep 2;20(9):1456-1466. doi: 10.1158/1541-7786.MCR-21-0941.
The NF-κB signaling pathway plays key roles in inflammation and the pathogenesis of many solid and hematologic malignancies, including multiple myeloma, a malignancy of the plasma cells. While proteasome inhibitors, such as bortezomib, employed in multiple myeloma treatments may inhibit NF-κB signaling pathways, multiple myeloma cells often become drug resistant in part due to non-cell autonomous mechanism(s) from the multiple myeloma tumor microenvironment. We previously found that fragments of, but not full-length, hyaluronan and proteoglycan link protein 1 (HAPLN1), produced by multiple myeloma bone marrow stromal cells (BMSC), activate an atypical bortezomib-resistant NF-κB pathway in multiple myeloma cells. In our current study, we found that multiple myeloma cells promote HAPLN1 expression and matrix metalloproteinase 2 (MMP2) activity in cocultured BMSCs and MMP2 activity is higher in BMSCs established from multiple myeloma patients' BM aspirates relative to normal equivalents. Moreover, MMP2 cleaves HAPLN1 into forms similar in size to those previously observed in patients with multiple myeloma with progressive disease. Both HAPLN1 and MMP2 in BMSCs were required to enhance NF-κB activation and resistance to bortezomib-induced cell death in cocultured multiple myeloma cells. We propose that MMP2-processing of HAPLN1 produces a matrikine that induces NF-κB activation and promotes bortezomib resistance in multiple myeloma cells.
HAPLN1 and MMP2 produced by BMSCs obtained from patients with multiple myeloma promote NF-κB activity and resistance to bortezomib toxicity in multiple myeloma cells, uncovering their potential as biomarkers or therapeutic targets to address bortezomib resistance in patients with multiple myeloma.
NF-κB 信号通路在炎症和许多实体瘤和血液系统恶性肿瘤的发病机制中发挥关键作用,包括多发性骨髓瘤,即浆细胞瘤的恶性肿瘤。虽然多发性骨髓瘤治疗中使用的蛋白酶体抑制剂,如硼替佐米,可以抑制 NF-κB 信号通路,但多发性骨髓瘤细胞往往会产生耐药性,部分原因是多发性骨髓瘤肿瘤微环境中的非细胞自主机制。我们之前发现,来源于多发性骨髓瘤骨髓基质细胞(BMSC)的透明质酸和蛋白聚糖连接蛋白 1(HAPLN1)的片段而非全长形式激活了多发性骨髓瘤细胞中一种非典型的硼替佐米耐药 NF-κB 通路。在我们目前的研究中,我们发现多发性骨髓瘤细胞在共培养的 BMSC 中促进 HAPLN1 表达和基质金属蛋白酶 2(MMP2)活性,并且来源于多发性骨髓瘤患者骨髓抽吸物的 BMSC 中的 MMP2 活性高于正常对照。此外,MMP2 将 HAPLN1 切割成与以前在疾病进展的多发性骨髓瘤患者中观察到的大小相似的形式。BMSC 中的 HAPLN1 和 MMP2 都需要增强共培养的多发性骨髓瘤细胞中 NF-κB 的激活和对硼替佐米诱导的细胞死亡的抵抗。我们提出 MMP2 对 HAPLN1 的加工产生了一种细胞外基质衍生的趋化因子,该趋化因子诱导 NF-κB 激活并促进多发性骨髓瘤细胞对硼替佐米的耐药性。
来源于多发性骨髓瘤患者的 BMSC 产生的 HAPLN1 和 MMP2 促进多发性骨髓瘤细胞中 NF-κB 的活性和对硼替佐米毒性的耐药性,揭示了它们作为生物标志物或治疗靶点的潜力,以解决多发性骨髓瘤患者对硼替佐米的耐药性。