Suppr超能文献

印度尼西亚 COVID-19 的空间差异及其决定因素。

Spatial differentiation and determinants of COVID-19 in Indonesia.

机构信息

Faculty of Social Sciences Education (FPIPS), Universitas Pendidikan Indonesia, Jln. Dr. Setiabudho no. 299, Bandung City, West Java, 40154, Indonesia.

National Research and Innovation Agency of Indonesia (BRIN), Jln. Kuningan Barat, Mampang Prapatan, Jakarta, 12710, Indonesia.

出版信息

BMC Public Health. 2022 May 23;22(1):1030. doi: 10.1186/s12889-022-13316-4.

Abstract

BACKGROUND

The spread of the coronavirus disease 2019 (COVID-19) has increasingly agonized daily lives worldwide. As an archipelagic country, Indonesia has various physical and social environments, which implies that each region has a different response to the pandemic. This study aims to analyze the spatial differentiation of COVID-19 in Indonesia and its interactions with socioenvironmental factors.

METHODS

The socioenvironmental factors include seven variables, namely, the internet development index, literacy index, average temperature, urban index, poverty rate, population density (PD) and commuter worker (CW) rate. The multiple linear regression (MLR) and geographically weighted regression (GWR) models are used to analyze the impact of the socioenvironmental factors on COVID-19 cases. COVID-19 data is obtained from the Indonesian Ministry of Health until November 30th 2020.

RESULTS

Results show that the COVID-19 cases in Indonesia are concentrated in Java, which is a densely populated area with high urbanization and industrialization. The other provinces with numerous confirmed COVID-19 cases include South Sulawesi, Bali, and North Sumatra. This study shows that the socioenvironmental factors, simultaneously, influence the increasing of confirmed COVID-19 cases in the 34 provinces of Indonesia. Spatial interactions between the variables in the GWR model are relatively better than those between the variables in the MLR model. The highest spatial tendency is observed outside Java, such as in East Nusa Tenggara, West Nusa Tenggara, and Bali.

CONCLUSION

Priority for mitigation and outbreak management should be high in areas with high PD, urbanized spaces, and CW.

摘要

背景

2019 年冠状病毒病(COVID-19)的传播使全球日常生活日益痛苦。作为一个群岛国家,印度尼西亚拥有各种自然和社会环境,这意味着每个地区对大流行的反应都不同。本研究旨在分析印度尼西亚 COVID-19 的空间差异及其与社会环境因素的相互作用。

方法

社会环境因素包括七个变量,即互联网发展指数、识字指数、平均温度、城市指数、贫困率、人口密度(PD)和通勤工人(CW)率。使用多元线性回归(MLR)和地理加权回归(GWR)模型分析社会环境因素对 COVID-19 病例的影响。COVID-19 数据来自印度尼西亚卫生部,截至 2020 年 11 月 30 日。

结果

结果表明,印度尼西亚的 COVID-19 病例集中在爪哇,爪哇是一个人口稠密、城市化和工业化程度高的地区。其他 COVID-19 确诊病例较多的省份包括南苏拉威西、巴厘和北苏门答腊。本研究表明,社会环境因素同时影响印度尼西亚 34 个省份 COVID-19 确诊病例的增加。GWR 模型中变量之间的空间相互作用比 MLR 模型中变量之间的空间相互作用相对更好。在爪哇以外的地区,如东努沙登加拉、西努沙登加拉和巴厘岛,观察到最高的空间趋势。

结论

在 PD 高、城市化空间和 CW 大的地区,应高度优先考虑缓解和疫情管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b432/9125850/51bafd24aafa/12889_2022_13316_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验