Suppr超能文献

基于质谱的蛋白质组学鉴定新型血清骨关节炎生物标志物。

Mass spectrometry-based proteomics identify novel serum osteoarthritis biomarkers.

机构信息

Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada.

CHU de Québec Research Center, Laval University, Quebec, QC, G1V 4G2, Canada.

出版信息

Arthritis Res Ther. 2022 May 23;24(1):120. doi: 10.1186/s13075-022-02801-1.

Abstract

BACKGROUND

Osteoarthritis (OA) is a slowly developing and debilitating disease, and there are no validated specific biomarkers for its early detection. To improve therapeutic approaches, identification of specific molecules/biomarkers enabling early determination of this disease is needed. This study aimed at identifying, with the use of proteomics/mass spectrometry, novel OA-specific serum biomarkers. As obesity is a major risk factor for OA, we discriminated obesity-regulated proteins to target only OA-specific proteins as biomarkers.

METHODS

Serum from the Osteoarthritis Initiative cohort was used and divided into 3 groups: controls (n=8), OA-obese (n=10) and OA-non-obese (n=10). Proteins were identified and quantified from the liquid chromatography-tandem mass spectrometry analyses using MaxQuant software. Statistical analysis used the Limma test followed by the Benjamini-Hochberg method. To compare the proteomic profiles, the multivariate unsupervised principal component analysis (PCA) followed by the pairwise comparison was used. To select the most predictive/discriminative features, the supervised linear classification model sparse partial least squares regression discriminant analysis (sPLS-DA) was employed. Validation of three differential proteins was performed with protein-specific assays using plasma from a cohort derived from the Newfoundland Osteoarthritis.

RESULTS

In total, 509 proteins were identified, and 279 proteins were quantified. PCA-pairwise differential comparisons between the 3 groups revealed that 8 proteins were differentially regulated between the OA-obese and/or OA-non-obese with controls. Further experiments using the sPLS-DA revealed two components discriminating OA from controls (component 1, 9 proteins), and OA-obese from OA-non-obese (component 2, 23 proteins). Proteins from component 2 were considered related to obesity. In component 1, compared to controls, 7 proteins were significantly upregulated by both OA groups and 2 by the OA-obese. Among upregulated proteins from both OA groups, some of them alone would not be a suitable choice as specific OA biomarkers due to their rather non-specific role or their strong link to other pathological conditions. Altogether, data revealed that the protein CRTAC1 appears to be a strong OA biomarker candidate. Other potential new biomarker candidates are the proteins FBN1, VDBP, and possibly SERPINF1. Validation experiments revealed statistical differences between controls and OA for FBN1 (p=0.044) and VDPB (p=0.022), and a trend for SERPINF1 (p=0.064).

CONCLUSION

Our study suggests that 4 proteins, CRTAC1, FBN1, VDBP, and possibly SERPINF1, warrant further investigation as potential new biomarker candidates for the whole OA population.

摘要

背景

骨关节炎(OA)是一种缓慢发展且使人虚弱的疾病,目前尚无经过验证的特定生物标志物可用于其早期检测。为了改善治疗方法,需要确定特定的分子/生物标志物,以便早期确定这种疾病。本研究旨在利用蛋白质组学/质谱法,鉴定新的 OA 特异性血清生物标志物。由于肥胖是 OA 的主要危险因素,我们区分了肥胖调节蛋白,以仅针对 OA 特异性蛋白作为生物标志物。

方法

使用骨关节炎倡议队列的血清,并将其分为 3 组:对照组(n=8)、OA 肥胖组(n=10)和 OA 非肥胖组(n=10)。使用 MaxQuant 软件从液相色谱-串联质谱分析中鉴定和定量蛋白质。使用 Limma 检验和 Benjamini-Hochberg 方法进行统计分析。为了比较蛋白质组图谱,使用多元无监督主成分分析(PCA)和成对比较。为了选择最具预测/区分能力的特征,使用有监督的线性分类模型稀疏偏最小二乘判别分析(sPLS-DA)。使用源自纽芬兰骨关节炎的队列的血浆,通过蛋白质特异性检测验证了三种差异蛋白。

结果

总共鉴定了 509 种蛋白质,定量了 279 种蛋白质。3 组之间的 PCA 成对差异比较显示,8 种蛋白质在 OA 肥胖组和/或 OA 非肥胖组与对照组之间存在差异调节。使用 sPLS-DA 的进一步实验显示,两个组件可区分 OA 与对照组(组件 1,9 种蛋白质),以及 OA 肥胖与 OA 非肥胖(组件 2,23 种蛋白质)。组件 2 的蛋白质与肥胖有关。在组件 1 中,与对照组相比,两个 OA 组的 7 种蛋白质都显著上调,2 种蛋白质由 OA 肥胖组上调。在两个 OA 组上调的蛋白质中,由于它们的作用不太特异或与其他病理状况有很强的联系,因此它们中的一些可能不是 OA 特异性生物标志物的合适选择。总的来说,数据表明 CRTAC1 蛋白似乎是一个强有力的 OA 生物标志物候选者。其他潜在的新生物标志物候选者是 FBN1、VDBP 和可能的 SERPINF1 蛋白。验证实验显示 FBN1(p=0.044)和 VDBP(p=0.022)在对照组和 OA 组之间存在统计学差异,SERPINF1 存在趋势(p=0.064)。

结论

我们的研究表明,CRTAC1、FBN1、VDBP 和可能的 SERPINF1 这 4 种蛋白值得进一步研究,作为 OA 整个人群的潜在新型生物标志物候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e38/9125906/ef24605f6390/13075_2022_2801_Fig1_HTML.jpg

相似文献

1
Mass spectrometry-based proteomics identify novel serum osteoarthritis biomarkers.
Arthritis Res Ther. 2022 May 23;24(1):120. doi: 10.1186/s13075-022-02801-1.
3
Mass spectrometry assays of plasma biomarkers to predict radiographic progression of knee osteoarthritis.
Arthritis Res Ther. 2014 Oct 7;16(5):456. doi: 10.1186/s13075-014-0456-6.
4
Biomarkers and proteomic analysis of osteoarthritis.
Matrix Biol. 2014 Oct;39:56-66. doi: 10.1016/j.matbio.2014.08.012. Epub 2014 Aug 30.
5
Multiplexed mass spectrometry monitoring of biomarker candidates for osteoarthritis.
J Proteomics. 2017 Jan 30;152:216-225. doi: 10.1016/j.jprot.2016.11.012. Epub 2016 Nov 16.
6
Plasma proteomics identifies CRTAC1 as a biomarker for osteoarthritis severity and progression.
Rheumatology (Oxford). 2023 Mar 1;62(3):1286-1295. doi: 10.1093/rheumatology/keac415.
7
Mass Spectrometry-based Biomarkers for Knee Osteoarthritis: A Systematic Review.
Expert Rev Proteomics. 2021 Aug;18(8):693-706. doi: 10.1080/14789450.2021.1952868. Epub 2021 Sep 9.
8
Novel TIA biomarkers identified by mass spectrometry-based proteomics.
Int J Stroke. 2015 Dec;10(8):1204-11. doi: 10.1111/ijs.12603. Epub 2015 Aug 26.
9
Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster.
J Proteomics. 2020 Aug 15;225:103879. doi: 10.1016/j.jprot.2020.103879. Epub 2020 Jun 30.

引用本文的文献

2
Osteoarthritis: Mechanisms and Therapeutic Advances.
MedComm (2020). 2025 Aug 1;6(8):e70290. doi: 10.1002/mco2.70290. eCollection 2025 Aug.
4
Advancing osteoarthritis research: the role of AI in clinical, imaging and omics fields.
Bone Res. 2025 Apr 22;13(1):48. doi: 10.1038/s41413-025-00423-2.
5
Plasma Proteomic Analysis Based on 4D-DIA Evaluates the Clinical Response to Imrecoxib in the Early Treatment of Osteoarthritis.
Rheumatol Ther. 2024 Apr;11(2):269-283. doi: 10.1007/s40744-023-00636-z. Epub 2024 Jan 18.
6
Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies.
Osteoarthritis Cartilage. 2024 Apr;32(4):385-397. doi: 10.1016/j.joca.2023.11.019. Epub 2023 Dec 2.
7
Associations of serum keratin 1 with thyroid function and immunity in Graves' disease.
PLoS One. 2023 Nov 29;18(11):e0289345. doi: 10.1371/journal.pone.0289345. eCollection 2023.
8
Serum proteomic biomarkers diagnostic of knee osteoarthritis.
Osteoarthritis Cartilage. 2024 Mar;32(3):329-337. doi: 10.1016/j.joca.2023.09.007. Epub 2023 Sep 19.

本文引用的文献

2
A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening.
Ther Adv Musculoskelet Dis. 2021 Feb 23;13:1759720X21993254. doi: 10.1177/1759720X21993254. eCollection 2021.
3
Endotypes of primary osteoarthritis identified by plasma metabolomics analysis.
Rheumatology (Oxford). 2021 Jun 18;60(6):2735-2744. doi: 10.1093/rheumatology/keaa693.
4
Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis.
Clin Proteomics. 2020 Jun 1;17:20. doi: 10.1186/s12014-020-09281-y. eCollection 2020.
5
New Insights into the Role of Tyro3, Axl, and Mer Receptors in Rheumatoid Arthritis.
Dis Markers. 2020 Jan 19;2020:1614627. doi: 10.1155/2020/1614627. eCollection 2020.
6
Proteomics analysis of colon cancer progression.
Clin Proteomics. 2019 Dec 28;16:44. doi: 10.1186/s12014-019-9264-y. eCollection 2019.
7
Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry.
Int J Mol Sci. 2019 Sep 5;20(18):4368. doi: 10.3390/ijms20184368.
8
Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative.
Ann Rheum Dis. 2019 Dec;78(12):1699-1705. doi: 10.1136/annrheumdis-2019-215325. Epub 2019 Aug 30.
9
Regulation of the Complement System by Pentraxins.
Front Immunol. 2019 Aug 2;10:1750. doi: 10.3389/fimmu.2019.01750. eCollection 2019.
10
Plasma proteome in multiple sclerosis disease progression.
Ann Clin Transl Neurol. 2019 Sep;6(9):1582-1594. doi: 10.1002/acn3.771. Epub 2019 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验