Suppr超能文献

一种用于早期膝关节骨关节炎结构进展患者筛查的预警机器学习算法。

A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening.

作者信息

Bonakdari Hossein, Jamshidi Afshin, Pelletier Jean-Pierre, Abram François, Tardif Ginette, Martel-Pelletier Johanne

机构信息

Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.

Medical Imaging Research and Development, ArthroLab Inc., Montreal, QC, Canada.

出版信息

Ther Adv Musculoskelet Dis. 2021 Feb 23;13:1759720X21993254. doi: 10.1177/1759720X21993254. eCollection 2021.

Abstract

AIM

In osteoarthritis (OA) there is a need for automated screening systems for early detection of structural progressors. We built a comprehensive machine learning (ML) model that bridges major OA risk factors and serum levels of adipokines/related inflammatory factors at baseline for early prediction of at-risk knee OA patient structural progressors over time.

METHODS

The patient- and gender-based model development used baseline serum levels of six adipokines, three related inflammatory factors and their ratios (36), as well as major OA risk factors [age and bone mass index (BMI)]. Subjects (677) were selected from the Osteoarthritis Initiative (OAI) progression subcohort. The probability values of being structural progressors (PVBSP) were generated using our previously published prediction model, including five baseline structural features of the knee, i.e. two X-rays and three magnetic resonance imaging variables. To identify the most important variables amongst the 47 studied in relation to PVBSP, we employed the ML feature classification methodology. Among five supervised ML algorithms, the support vector machine (SVM) demonstrated the best accuracy and use for gender-based classifiers development. Performance and sensitivity of the models were assessed. A reproducibility analysis was performed with clinical trial OA patients.

RESULTS

Feature selections revealed that the combination of age, BMI, and the ratios CRP/MCP-1 and leptin/CRP are the most important variables in predicting OA structural progressors in both genders. Classification accuracies for both genders in the testing stage (OAI) were >80%, with the highest sensitivity of CRP/MCP-1. Reproducibility analysis showed an accuracy ⩾92%; the ratio CRP/MCP-1 demonstrated the highest sensitivity in women and leptin/CRP in men.

CONCLUSION

This is the first time that such a framework was built for predicting knee OA structural progressors. Using this automated ML patient- and gender-based model, early prediction of knee structural OA progression can be performed with high accuracy using only three baseline serum biomarkers and two risk factors.

PLAIN LANGUAGE SUMMARY

Knee osteoarthritis is a well-known debilitating disease leading to reduced mobility and quality of life - the main causes of chronic invalidity. Disease evolution can be slow and span many years; however, for some individuals, the progression/evolution can be fast. Current treatments are only symptomatic and conventional diagnosis of osteoarthritis is not very effective in early identification of patients who will progress rapidly. To improve therapeutic approaches, we need a robust prediction model to stratify osteoarthritis patients at an early stage according to risk of joint structure disease progression.We hypothesize that a prediction model using a machine learning system would enable such an early identification of individuals for whom osteoarthritis knee structure will degrade rapidly. Data were from the Osteoarthritis Initiative, a National Institute of Health (United States) databank, and the robustness and generalizability of the developed model was further evaluated using osteoarthritis patients from an external cohort. Using the supervised machine learning system (support vector machine), we developed an automated patient- and gender-based model enabling an early clinical prognosis for individuals at high risk of structural progressive osteoarthritis. In brief, this model employed at baseline (when the subject sees a physician) easily obtained features consisting of the two main osteoarthritis risk factors, age and bone mass index (BMI), in addition to the serum levels of three molecules. Two of these molecules belong to a family of factors names adipokines and one to a related inflammatory factor. In brief, the model comprising a combination of age, BMI, and the ratios CRP/MCP-1 and leptin/CRP were found very robust for both genders, and the high accuracy persists when tested with an external cohort conferring the gender-based model generalizability. This study offers a new automated system for identifying early knee osteoarthritis structural progressors, which will significantly improve clinical prognosis with real time patient monitoring.

摘要

目的

在骨关节炎(OA)中,需要自动化筛查系统来早期检测结构进展者。我们构建了一个综合机器学习(ML)模型,该模型在基线时将主要OA风险因素与脂肪因子/相关炎症因子的血清水平联系起来,以早期预测高危膝OA患者随时间推移的结构进展情况。

方法

基于患者和性别的模型开发使用了六种脂肪因子、三种相关炎症因子及其比率(共36个指标)的基线血清水平,以及主要OA风险因素[年龄和体重指数(BMI)]。受试者(677名)选自骨关节炎倡议(OAI)进展亚队列。使用我们之前发表的预测模型生成成为结构进展者的概率值(PVBSP),该模型包括膝关节的五个基线结构特征,即两张X线片和三个磁共振成像变量。为了确定在研究的47个变量中与PVBSP相关的最重要变量,我们采用了ML特征分类方法。在五种监督ML算法中,支持向量机(SVM)在基于性别的分类器开发中表现出最佳准确性和适用性。评估了模型的性能和敏感性。对临床试验OA患者进行了可重复性分析。

结果

特征选择显示,年龄、BMI以及CRP/MCP-1和瘦素/CRP的比率组合是预测两性OA结构进展者的最重要变量。在测试阶段(OAI),两性的分类准确率均>80%,其中CRP/MCP-1的敏感性最高。可重复性分析显示准确率⩾92%;CRP/MCP-1比率在女性中敏感性最高,瘦素/CRP在男性中敏感性最高。

结论

这是首次构建这样一个用于预测膝OA结构进展者的框架。使用这个基于患者和性别的自动化ML模型,仅使用三种基线血清生物标志物和两个风险因素就能高精度地早期预测膝部结构OA的进展。

通俗易懂的总结

膝骨关节炎是一种众所周知的使人衰弱的疾病,会导致行动能力和生活质量下降,是慢性残疾的主要原因。疾病进展可能缓慢且持续多年;然而,对于一些个体来说,进展/演变可能很快。目前的治疗只是对症治疗,而骨关节炎的传统诊断在早期识别将快速进展的患者方面效果不佳。为了改进治疗方法,我们需要一个强大的预测模型,以便在早期根据关节结构疾病进展风险对骨关节炎患者进行分层。我们假设使用机器学习系统的预测模型将能够早期识别膝骨关节炎结构将迅速退化的个体。数据来自美国国立卫生研究院的骨关节炎倡议数据库,并且使用来自外部队列的骨关节炎患者进一步评估了所开发模型的稳健性和通用性。使用监督机器学习系统(支持向量机),我们开发了一个基于患者和性别的自动化模型,能够对结构进展性骨关节炎高危个体进行早期临床预后评估。简而言之,该模型在基线时(当受试者看医生时)采用易于获得的特征,包括两个主要骨关节炎风险因素,即年龄和体重指数(BMI),以及三种分子的血清水平。这些分子中的两种属于脂肪因子家族,一种属于相关炎症因子。简而言之,发现年龄、BMI以及CRP/MCP-1和瘦素/CRP的比率组合对两性都非常稳健,并且在使用外部队列进行测试时,基于性别的模型具有通用性,高精度得以保持。这项研究提供了一种用于识别早期膝骨关节炎结构进展者的新自动化系统,这将通过实时患者监测显著改善临床预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50f9/7905723/81741d4301cd/10.1177_1759720X21993254-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验