Suppr超能文献

混合数据采集模式对去中心化临床试验统计推断的影响。

Impact of Using A Mixed Data Collection Modality on Statistical Inferences in Decentralized Clinical Trials.

机构信息

Department of Statistics, Data and Analytics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.

出版信息

Ther Innov Regul Sci. 2022 Sep;56(5):744-752. doi: 10.1007/s43441-022-00416-x. Epub 2022 May 24.

Abstract

BACKGROUND

Decentralized clinical trials offer the promise of reduced patient burden, faster and more diverse recruitment, and have received regulatory support during the COVID-19 pandemic. However, lack of data accuracy or data validation poses a challenge for fully decentralized trials. A mixed data collection modality where onsite measurements are collected at key time points and decentralized measurements are taken at intermediate time points is attractive operationally. To date, the impact of decentralized measurements (which could presumably be less accurate) taken at intermediate time points on statistical inference on the primary or other key time points has not been evaluated.

METHODS

In this article we evaluate the estimation and statistical inference for three scenarios: (1) all onsite measurements, (2) a mixture of onsite and decentralized measurements, and (3) all decentralized measurements, in the setting of a chronic weight management trial. We consider scenarios where decentralized measurements have additional within- and between-subject variabilities and/or bias.

RESULTS

In the mixed modality setting, simulation studies showed that the estimation and inference for the key time points with onsite measurements have good properties and are not impacted by the additional variability and bias from intermediate decentralized measurements. However, estimates for intermediate decentralized time points for the mixed modality and estimates for the all decentralized modality measurements have increased variability and bias.

CONCLUSION

Mixed modality trials can help achieve the benefits of decentralized clinical trials by reducing the number of onsite visits with little impact on statistical inferences for various estimands, compared to traditional (all onsite) clinical trials.

摘要

背景

去中心化临床试验有望减少患者负担,加快招募速度,增加多样性,并在 COVID-19 大流行期间获得监管支持。然而,数据准确性或数据验证的缺乏对完全去中心化试验构成了挑战。一种混合数据收集模式,即在关键时间点采集现场测量数据,在中间时间点采集去中心化测量数据,在操作上具有吸引力。迄今为止,尚未评估中间时间点采集的去中心化测量值(可能不太准确)对主要或其他关键时间点的统计推断的影响。

方法

本文在慢性体重管理试验的背景下,评估了三种情况下的估计和统计推断:(1)所有现场测量值,(2)现场和去中心化测量值的混合,以及(3)所有去中心化测量值。我们考虑了去中心化测量值具有额外的个体内和个体间变异性和/或偏差的情况。

结果

在混合模式设置中,模拟研究表明,具有现场测量值的关键时间点的估计和推断具有良好的特性,不受中间去中心化测量值的额外变异性和偏差的影响。然而,混合模式的中间去中心化时间点的估计值和所有去中心化模式测量值的估计值具有更大的变异性和偏差。

结论

与传统(全部现场)临床试验相比,混合模式试验可以通过减少现场访问次数来帮助实现去中心化临床试验的好处,而对各种估计值的统计推断几乎没有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e26a/9128333/7fdbbad1273b/43441_2022_416_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验