Suppr超能文献

无家可归患者的共病特征:潜在类别分析。

Comorbidity profiles of patients experiencing homelessness: A latent class analysis.

机构信息

Institute for Research on Equity and Community Health, ChristianaCare Health Systems, Wilmington, Delaware, United States of America.

Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America.

出版信息

PLoS One. 2022 May 24;17(5):e0268841. doi: 10.1371/journal.pone.0268841. eCollection 2022.

Abstract

Individuals experiencing homelessness are known to have increased rates of healthcare utilization when compared to the average patient population, often attributed to their complex health care needs and under or untreated comorbid conditions. With increasing focus on hospital readmissions among acute care settings, a better understanding of these comorbidity patterns and their impacts on acute care utilization could help improve quality of care. This study aims to identify distinct comorbidity profiles of homeless patients, and to explore the correlates of the identified comorbidity profiles and their impact on hospital readmission. This is a retrospective analysis using electronic health records (EHR) of patients experiencing homelessness encountered in the hospitals of ChristianaCare from 2015 to 2019 (N = 3445). Latent class analysis (LCA) was used to identify the comorbidity profiles of homeless patients. The mean age of the study population was 44-year, and the majority were male (63%). The most prevalent comorbid conditions were tobacco use (77%), followed by depression (58%), drug use disorder (56%), anxiety disorder (50%), hypertension (44%), and alcohol use disorder (43%). The LCA model identified 4 comorbidity classes-"relatively healthy" class with 31% of the patients, "medically-comorbid with SUD" class with 15% of the patients, "substance use disorder (SUD)" class with 39%, and "Medically comorbid" class with 15% of the patients. The Kaplan-Meir curves of probability of readmission against time from the index visits were significantly different for the four classes (p<0.001). The multivariable Cox proportional hazard model adjusted for age, sex, race, ethnicity, and insurance type showed that the hazard for readmission among patients in medically comorbid with SUD class is 3.16 (CI: 2.72, 3.67) times higher than the patients in the relatively healthy class.

摘要

与普通患者群体相比,无家可归者的医疗保健利用率较高,这通常归因于他们复杂的医疗保健需求以及未得到治疗或治疗不足的合并症。随着急性护理环境中对医院再入院的关注度不断提高,更好地了解这些合并症模式及其对急性护理利用的影响有助于提高护理质量。本研究旨在确定无家可归者的不同合并症特征,并探讨所确定的合并症特征及其对医院再入院的影响的相关性。这是一项使用克里斯蒂安娜护理医院(ChristianaCare) 2015 年至 2019 年期间接受治疗的无家可归患者的电子健康记录(EHR)进行的回顾性分析(N=3445)。使用潜在类别分析(LCA)来确定无家可归患者的合并症特征。研究人群的平均年龄为 44 岁,大多数为男性(63%)。最常见的合并症是吸烟(77%),其次是抑郁症(58%)、药物使用障碍(56%)、焦虑症(50%)、高血压(44%)和酒精使用障碍(43%)。LCA 模型确定了 4 种合并症类别 - “相对健康”类别,占患者的 31%,“与 SUD 合并的医学疾病”类别,占患者的 15%,“物质使用障碍(SUD)”类别,占患者的 39%,以及“与 SUD 合并的医学疾病”类别,占患者的 15%。从索引就诊时间起,按时间计算的再入院概率的 Kaplan-Meier 曲线在四个类别之间差异显著(p<0.001)。多变量 Cox 比例风险模型调整了年龄、性别、种族、民族和保险类型,结果表明,与相对健康类别相比,SUD 合并的医学疾病类别的患者再入院的风险高 3.16 倍(CI:2.72,3.67)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e14/9128947/a32c9ecbd598/pone.0268841.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验