Gupta Ankit, Sabirsh Alan, Wahlby Carolina, Sintorn Ida-Maria
IEEE J Biomed Health Inform. 2022 Aug;26(8):4079-4089. doi: 10.1109/JBHI.2022.3177602. Epub 2022 Aug 11.
Large-scale microscopy-based experiments often result in images with rich but sparse information content. An experienced microscopist can visually identify regions of interest (ROIs), but this becomes a cumbersome task with large datasets. Here we present SimSearch, a framework for quick and easy user-guided training of a deep neural model aimed at fast detection of ROIs in large-scale microscopy experiments.
The user manually selects a small number of patches representing different classes of ROIs. This is followed by feature extraction using a pre-trained deep-learning model, and interactive patch selection pruning, resulting in a smaller set of clean (user approved) and larger set of noisy (unapproved) training patches of ROIs and background. The pre-trained deep-learning model is thereafter first trained on the large set of noisy patches, followed by refined training using the clean patches.
The framework is evaluated on fluorescence microscopy images from a large-scale drug screening experiment, brightfield images of immunohistochemistry-stained patient tissue samples, and malaria-infected human blood smears, as well as transmission electron microscopy images of cell sections. Compared to state-of-the-art and manual/visual assessment, the results show similar performance with maximal flexibility and minimal a priori information and user interaction.
SimSearch quickly adapts to different data sets, which demonstrates the potential to speed up many microscopy-based experiments based on a small amount of user interaction.
SimSearch can help biologists quickly extract informative regions and perform analyses on large datasets helping increase the throughput in a microscopy experiment.
基于显微镜的大规模实验通常会产生信息丰富但稀疏的图像。经验丰富的显微镜专家可以通过视觉识别感兴趣区域(ROI),但对于大型数据集来说,这会成为一项繁琐的任务。在此,我们展示了SimSearch,这是一个用于快速轻松地进行用户引导的深度神经模型训练的框架,旨在快速检测大规模显微镜实验中的ROI。
用户手动选择少量代表不同类别的ROI的图像块。随后使用预训练的深度学习模型进行特征提取,并进行交互式图像块选择修剪,从而得到一组较小的干净(用户认可)的ROI训练图像块和背景图像块以及一组较大的嘈杂(未认可)的训练图像块。此后,预训练的深度学习模型首先在大量嘈杂图像块上进行训练,然后使用干净图像块进行精细训练。
该框架在来自大规模药物筛选实验的荧光显微镜图像、免疫组织化学染色的患者组织样本的明场图像、疟疾感染的人体血液涂片以及细胞切片的透射电子显微镜图像上进行了评估。与现有技术以及手动/视觉评估相比,结果显示出相似的性能,同时具有最大的灵活性、最少的先验信息和用户交互。
SimSearch能够快速适应不同的数据集,这表明了基于少量用户交互来加速许多基于显微镜的实验的潜力。
SimSearch可以帮助生物学家快速提取信息丰富的区域,并对大型数据集进行分析,有助于提高显微镜实验的通量。