Suppr超能文献

构建一个用于基础模型转化与临床整合的道德且值得信赖的生物医学人工智能生态系统。

Building an Ethical and Trustworthy Biomedical AI Ecosystem for the Translational and Clinical Integration of Foundation Models.

作者信息

Sankar Baradwaj Simha, Gilliland Destiny, Rincon Jack, Hermjakob Henning, Yan Yu, Adam Irsyad, Lemaster Gwyneth, Wang Dean, Watson Karol, Bui Alex, Wang Wei, Ping Peipei

机构信息

Department of Physiology, University of California, Los Angeles, CA 90095, USA.

NIH CFDE ICC-SC, NIH BRIDGE2AI Center & NHLBI Integrated Cardiovascular Data Science Training Program, UCLA, Los Angeles, CA 90095, USA.

出版信息

Bioengineering (Basel). 2024 Sep 29;11(10):984. doi: 10.3390/bioengineering11100984.

Abstract

Foundation Models (FMs) are gaining increasing attention in the biomedical artificial intelligence (AI) ecosystem due to their ability to represent and contextualize multimodal biomedical data. These capabilities make FMs a valuable tool for a variety of tasks, including biomedical reasoning, hypothesis generation, and interpreting complex imaging data. In this review paper, we address the unique challenges associated with establishing an ethical and trustworthy biomedical AI ecosystem, with a particular focus on the development of FMs and their downstream applications. We explore strategies that can be implemented throughout the biomedical AI pipeline to effectively tackle these challenges, ensuring that these FMs are translated responsibly into clinical and translational settings. Additionally, we emphasize the importance of key stewardship and co-design principles that not only ensure robust regulation but also guarantee that the interests of all stakeholders-especially those involved in or affected by these clinical and translational applications-are adequately represented. We aim to empower the biomedical AI community to harness these models responsibly and effectively. As we navigate this exciting frontier, our collective commitment to ethical stewardship, co-design, and responsible translation will be instrumental in ensuring that the evolution of FMs truly enhances patient care and medical decision-making, ultimately leading to a more equitable and trustworthy biomedical AI ecosystem.

摘要

基础模型(FMs)因其能够表示多模态生物医学数据并将其置于上下文之中,在生物医学人工智能(AI)生态系统中受到越来越多的关注。这些能力使基础模型成为执行各种任务的宝贵工具,包括生物医学推理、假设生成以及解释复杂的成像数据。在这篇综述论文中,我们阐述了与建立一个符合伦理且值得信赖的生物医学人工智能生态系统相关的独特挑战,特别关注基础模型的开发及其下游应用。我们探索了可在整个生物医学人工智能流程中实施的策略,以有效应对这些挑战,确保这些基础模型能够以负责任的方式转化到临床和转化环境中。此外,我们强调关键管理和协同设计原则的重要性,这些原则不仅能确保有力的监管,还能保证所有利益相关者的利益——尤其是那些参与或受这些临床和转化应用影响的利益相关者的利益——得到充分体现。我们旨在使生物医学人工智能社区能够负责任且有效地利用这些模型。在我们探索这个令人兴奋的前沿领域时,我们对伦理管理、协同设计和负责任转化的共同承诺,将有助于确保基础模型的发展真正提升患者护理和医疗决策水平,最终打造一个更加公平且值得信赖的生物医学人工智能生态系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/186f/11504392/624c8d9075c9/bioengineering-11-00984-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验