Suppr超能文献

iHearken:基于 Bi-LSTM softmax 网络的咀嚼声信号分析的食物摄入识别系统。

iHearken: Chewing sound signal analysis based food intake recognition system using Bi-LSTM softmax network.

机构信息

Department of Electronics & Communication Engineering, National Institute of Technology Raipur, G.E. Road, Raipur, Chhatisgarh - 492010, India.

Department of Electronics & Communication Engineering, National Institute of Technology Raipur, G.E. Road, Raipur, Chhatisgarh - 492010, India.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106843. doi: 10.1016/j.cmpb.2022.106843. Epub 2022 May 5.

Abstract

BACKGROUND AND OBJECTIVE

Food ingestion is an integral part of health and wellness. Continues monitoring of different food types and observing the amount being consumed prevents gastrointestinal diseases and weight-related issues. Food intake recognition (FIR) systems, thus have significant impact on everyday life. The purpose of this study is to develop an automatic approach for the FIR using a contemporary wearable hardware and machine learning technique. This will assist clinicians and concern person to manage health issues associated with food intake.

METHODS

In this work, we present a novel hardware iHearken, a headphone-like wearable sensor-based system to monitor eating activities and recognize food intake type in the free-living condition. State-of-the-art hardware is designed for data acquisition where 16 subjects are recruited and 20 different food items are used for data collection. Further, chewing sound signals are analyzed for FIR using bottleneck features. The proposed model is divided into 4 distinct phases: data acquisition, event detection using a pre-trained model, bottleneck feature extraction, and classification based on bidirectional long short-term memory (Bi-LSTM) softmax model. The Bi-LSTM network with softmax function is applied to calculate the identification score for apiece chewing signal which further classifies the chewing signal data into liquid / solid food classes.

RESULTS

The results of proposed model performance is evaluated in (%) for accuracy, precision, recall and F-score as 97.422, 96.808, 98.0, and 97.512, respectively, and root mean square error (RMSE), and mean absolute percentage error (MAPE) as 0.160 1.030 respectively for numbers of correct food type recognized. Further, we also evaluated our model's performance for food classification into solid and liquid and achieved an accuracy (96.66%), precision (96.40%), recall (95.230%), F-score (95.79%), RMSE (0.182), and MAPE (2.22). We also demonstrated that the food recognition accuracy of different models with the proposed model differed statistically.

CONCLUSION

An informatics complexity study of the proposed model was subsequently explored to review the effectiveness of the proposed wearable device and the methodology. The medical importance of this investigation is the reliable monitoring of the clinical development of the food intake classification methods via food chew event detection in the ambulatory environment has been justified.

摘要

背景与目的

进食是健康和幸福不可或缺的一部分。持续监测不同类型的食物并观察摄入量可以预防胃肠道疾病和与体重相关的问题。因此,食物摄入识别 (FIR) 系统对日常生活有重大影响。本研究旨在开发一种使用现代可穿戴硬件和机器学习技术的自动 FIR 方法。这将有助于临床医生和相关人员管理与食物摄入相关的健康问题。

方法

在这项工作中,我们提出了一种新颖的硬件 iHearken,这是一种类似于耳机的基于可穿戴传感器的系统,可在自由生活条件下监测进食活动并识别食物摄入类型。最先进的硬件用于数据采集,其中招募了 16 名受试者,并使用 20 种不同的食物进行数据采集。进一步,使用瓶颈特征分析咀嚼声音信号进行 FIR。所提出的模型分为 4 个不同阶段:数据采集、使用预训练模型进行事件检测、瓶颈特征提取以及基于双向长短期记忆 (Bi-LSTM) 软最大模型的分类。应用 Bi-LSTM 网络和软最大函数计算每个咀嚼信号的识别分数,然后将咀嚼信号数据进一步分类为液体/固体食物类。

结果

提出的模型性能的结果以准确度、精确度、召回率和 F 分数 (%) 分别评估为 97.422、96.808、98.0 和 97.512,以及均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE) 分别为 0.160 和 1.030,用于正确识别的食物类型数量。此外,我们还评估了我们的模型将食物分类为固体和液体的性能,并实现了准确度 (96.66%)、精确度 (96.40%)、召回率 (95.230%)、F 分数 (95.79%)、RMSE (0.182) 和 MAPE (2.22)。我们还表明,不同模型的食物识别准确性与所提出的模型存在统计学差异。

结论

随后对所提出模型进行了信息复杂性研究,以审查可穿戴设备和方法的有效性。这项研究的医学重要性在于通过在非卧床环境中检测食物咀嚼事件,可靠地监测食物摄入分类方法的临床发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验