Suppr超能文献

iUMRG:用于推断葡萄膜黑色素瘤易感性基因和潜在药物的多层网络引导传播建模。

iUMRG: multi-layered network-guided propagation modeling for the inference of susceptibility genes and potential drugs against uveal melanoma.

机构信息

School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China.

Tibet Medical College, Beijing University of Chinese Medicine, Tibet, 850010, P. R. China.

出版信息

NPJ Syst Biol Appl. 2022 May 24;8(1):18. doi: 10.1038/s41540-022-00227-8.

Abstract

Uveal melanoma (UM) is the most common primary malignant intraocular tumor. The use of precision medicine for UM to enable personalized diagnosis, prognosis, and treatment require the development of computer-aided strategies and predictive tools that can identify novel high-confidence susceptibility genes (HSGs) and potential therapeutic drugs. In the present study, a computational framework via propagation modeling on integrated multi-layered molecular networks (abbreviated as iUMRG) was proposed for the systematic inference of HSGs in UM. Under the leave-one-out cross-validation experiments, the iUMRG achieved superior predictive performance and yielded a higher area under the receiver operating characteristic curve value (0.8825) for experimentally verified SGs. In addition, using the experimentally verified SGs as seeds, genome-wide screening was performed to detect candidate HSGs using the iUMRG. Multi-perspective validation analysis indicated that most of the top 50 candidate HSGs were indeed markedly associated with UM carcinogenesis, progression, and outcome. Finally, drug repositioning experiments performed on the HSGs revealed 17 potential targets and 10 potential drugs, of which six have been approved for UM treatment. In conclusion, the proposed iUMRG is an effective supplementary tool in UM precision medicine, which may assist the development of new medical therapies and discover new SGs.

摘要

葡萄膜黑色素瘤 (UM) 是最常见的原发性眼内恶性肿瘤。为了实现 UM 的精准医学,需要开发计算机辅助策略和预测工具,以识别新的高可信度易感基因 (HSG) 和潜在的治疗药物。在本研究中,提出了一种通过整合多层次分子网络上的传播建模的计算框架 (简称 iUMRG),用于系统推断 UM 中的 HSG。在留一法交叉验证实验中,iUMRG 实现了优异的预测性能,为实验验证的 SG 产生了更高的接收器操作特征曲线下面积值 (0.8825)。此外,使用实验验证的 SG 作为种子,通过 iUMRG 进行全基因组筛选,以检测候选 HSG。多视角验证分析表明,前 50 个候选 HSG 中的大多数确实与 UM 癌变、进展和结局显著相关。最后,对 HSG 进行的药物重定位实验揭示了 17 个潜在靶点和 10 种潜在药物,其中 6 种已被批准用于 UM 治疗。总之,所提出的 iUMRG 是 UM 精准医学中的一种有效补充工具,可辅助开发新的医疗疗法和发现新的 SG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e139/9130324/08ae464d2d1d/41540_2022_227_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验