Suppr超能文献

用于系统理解和预测 EDC 诱导毒性的毒代基因组学数据空间。

A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity.

机构信息

Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland.

Department of Chemical, Materials and Industrial Engineering, University of Naples, 'Federico II', Naples 80125, Italy.

出版信息

Environ Int. 2021 Nov;156:106751. doi: 10.1016/j.envint.2021.106751. Epub 2021 Jul 13.

Abstract

Endocrine disrupting compounds (EDCs) are a persistent threat to humans and wildlife due to their ability to interfere with endocrine signaling pathways. Inspired by previous work to improve chemical hazard identification through the use of toxicogenomics data, we developed a genomic-oriented data space for profiling the molecular activity of EDCs in an in silico manner, and for creating predictive models that identify and prioritize EDCs. Predictive models of EDCs, derived from gene expression data from rats (in vivo and in vitro primary hepatocytes) and humans (in vitro primary hepatocytes and HepG2), achieve testing accuracy greater than 90%. Negative test sets indicate that known safer chemicals are not predicted as EDCs. The rat in vivo-based classifiers achieve accuracy greater than 75% when tested for invitro to in vivoextrapolation. This study reveals key metabolic pathways and genes affected by EDCs together with a set of predictive models that utilize these pathways to prioritize EDCs in dose/time dependent manner and to predict EDCevokedmetabolic diseases.

摘要

内分泌干扰化合物(EDCs)由于能够干扰内分泌信号通路,对人类和野生动物构成持续威胁。受先前利用毒理学基因组学数据改进化学危害识别工作的启发,我们开发了一个以基因组为导向的数据空间,以在计算机模拟方式下分析 EDC 的分子活性,并创建用于识别和优先排序 EDC 的预测模型。基于大鼠(体内和体外原代肝细胞)和人类(体外原代肝细胞和 HepG2)的基因表达数据,我们得出的 EDC 预测模型的测试准确率超过 90%。阴性测试集表明,已知更安全的化学物质不会被预测为 EDC。基于大鼠体内的分类器在进行体外到体内外推测试时,准确率超过 75%。本研究揭示了受 EDC 影响的关键代谢途径和基因,以及一组预测模型,这些模型利用这些途径以剂量/时间依赖的方式对 EDC 进行优先级排序,并预测 EDC 引起的代谢疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验