Suppr超能文献

基于可解释决策树模型的苏醒性中风结局预测。

Wake-up Stroke Outcome Prediction by Interpretable Decision Tree Model.

机构信息

Department of Engineering and Architecture, University of Trieste, Trieste, Italy.

Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy.

出版信息

Stud Health Technol Inform. 2022 May 25;294:569-570. doi: 10.3233/SHTI220527.

Abstract

Outcome prediction in wake-up ischemic stroke (WUS) is important for guiding treatment strategies, in order to improve recovery and minimize disability. We aimed at producing an interpretable model to predict a good outcome (NIHSS 7-day<5) in thrombolysis treated WUS patients by using Classification and Regression Tree (CART) method. The study encompassed 104 WUS patients and we used a dataset consisting of demographic, clinical and neuroimaging features. The model was produced by CART with Gini split criterion and evaluated by using 5-fold cross-validation. The produced decision tree model was based on NIHSS at admission, ischemic core volume and age features. The predictive accuracy of model was 86.5% and the AUC-ROC was 0.88. In conclusion, in this preliminary study we identified interpretable model based on clinical and neuroimaging features to predict clinical outcome in thrombolysis treated wake-up stroke patients.

摘要

对于指导治疗策略来说,对觉醒型缺血性脑卒中(WUS)患者的预后进行预测非常重要,这有助于改善患者的恢复情况并使残疾程度最小化。我们旨在使用分类回归树(CART)方法,建立一个可以解释的模型,以便对接受溶栓治疗的 WUS 患者的良好预后(NIHSS 7 天<5)进行预测。该研究纳入了 104 名 WUS 患者,我们使用了包含人口统计学、临床和神经影像学特征的数据集。该模型由基尼分割标准的 CART 生成,并通过 5 倍交叉验证进行评估。生成的决策树模型基于入院时的 NIHSS、缺血核心体积和年龄特征。该模型的预测准确性为 86.5%,AUC-ROC 为 0.88。总之,在这项初步研究中,我们基于临床和神经影像学特征确定了可解释的模型,以预测接受溶栓治疗的觉醒型脑卒中患者的临床预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验