Suppr超能文献

多路径翻译在 SNOMED CT 本地化中的验证。

Validation of Multiple Path Translation for SNOMED CT Localisation.

机构信息

IMI, Medical University of Graz, Austria.

Institute for AI in Healthcare, Technical University of Munich, Germany.

出版信息

Stud Health Technol Inform. 2022 May 25;294:961-962. doi: 10.3233/SHTI220641.

Abstract

The MTP (multiple translation paths) approach supports human translators in clinical terminology localization. It exploits the results of web-based machine translation tools and generates, for a chosen target language, a scored output of translation candidates for each input terminology code. We present first results of a validation, using four SNOMED CT benchmarks and three translation engines. For German as target language, there was a significant advantage of MTP as a generator of plausible translation candidate lists, and a moderate advantage of the top-ranked MTP translation candidate over single best performing direct-translation approaches.

摘要

MTP(多翻译路径)方法支持临床术语本地化中的人工翻译。它利用基于网络的机器翻译工具的结果,为选定的目标语言生成每个输入术语代码的评分输出的翻译候选。我们使用四个 SNOMED CT 基准和三个翻译引擎展示了验证的初步结果。对于德语作为目标语言,MTP 作为似是而非的翻译候选列表生成器具有显著优势,而排名最高的 MTP 翻译候选相对于单个最佳直接翻译方法具有中等优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验