Suppr超能文献

用于混合颜色模式识别的基于二维材料的多波长光电突触

Multiwavelength Optoelectronic Synapse with 2D Materials for Mixed-Color Pattern Recognition.

作者信息

Islam Molla Manjurul, Krishnaprasad Adithi, Dev Durjoy, Martinez-Martinez Ricardo, Okonkwo Victor, Wu Benjamin, Han Sang Sub, Bae Tae-Sung, Chung Hee-Suk, Touma Jimmy, Jung Yeonwoong, Roy Tania

机构信息

NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.

Department of Physics, University of Central Florida, Orlando, Florida 32816, United States.

出版信息

ACS Nano. 2022 Jul 26;16(7):10188-10198. doi: 10.1021/acsnano.2c01035. Epub 2022 May 25.

Abstract

Neuromorphic visual systems emulating biological retina functionalities have enormous potential for in-sensor computing, with prospects of making artificial intelligence ubiquitous. Conventionally, visual information is captured by an image sensor, stored by memory units, and eventually processed by the machine learning algorithm. Here, we present an optoelectronic synapse device with multifunctional integration of all the processes required for real time object identification. Ultraviolet-visible wavelength-sensitive MoS FET channel with infrared sensitive PtTe/Si gate electrode enables the device to sense, store, and process optical data for a wide range of the electromagnetic spectrum, while maintaining a low dark current. The device exhibits optical stimulation-controlled short-term and long-term potentiation, electrically driven long-term depression, synaptic weight update for multiple wavelengths of light ranging from 300 nm in ultraviolet to 2 μm in infrared. An artificial neural network developed using the extracted weight update parameters of the device can be trained to identify both single wavelength and mixed wavelength patterns. This work demonstrates a device that could potentially be used for realizing a multiwavelength neuromorphic visual system for pattern recognition and object identification.

摘要

模拟生物视网膜功能的神经形态视觉系统在传感器内计算方面具有巨大潜力,有望使人工智能无处不在。传统上,视觉信息由图像传感器捕获,由存储单元存储,最终由机器学习算法处理。在此,我们展示了一种光电突触器件,它将实时目标识别所需的所有过程进行了多功能集成。具有红外敏感的PtTe/Si栅电极的紫外 - 可见波长敏感的MoS FET沟道使该器件能够在保持低暗电流的同时,对广泛的电磁频谱进行光学数据的传感、存储和处理。该器件表现出光刺激控制的短期和长期增强、电驱动的长期抑制,以及针对从紫外300 nm到红外2 μm的多种波长光的突触权重更新。使用该器件提取的权重更新参数开发的人工神经网络可以被训练来识别单波长和混合波长模式。这项工作展示了一种有可能用于实现用于模式识别和目标识别的多波长神经形态视觉系统的器件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验