Suppr超能文献

饮用水的芳香度和可处理性可通过溶解有机物的荧光来预测。

Drinking water aromaticity and treatability is predicted by dissolved organic matter fluorescence.

机构信息

SUEZ - CIRSEE, 38, rue du Président-Wilson, 78230, Le Pecq, France.

Chalmers University of Technology, Department of Architecture and Civil Engineering, SE-412 96, Gothenburg, Sweden.

出版信息

Water Res. 2022 Jul 15;220:118592. doi: 10.1016/j.watres.2022.118592. Epub 2022 May 12.

Abstract

Samples from fifty-five surface water resources and twenty-five drinking water treatment plants in Europe, Africa, Asia, and USA were used to analyse the fluorescence composition of global surface waters and predict aromaticity and treatability from fluorescence excitation emission matrices. Nine underlying fluorescence components were identified in the dataset using parallel factor analysis (PARAFAC) and differences in aromaticity and treatability could be predicted from ratios between components H (λ/λ= 395/521), H (λ/λ= 330/404), P, (λ/λ=290/365) and P (λ/λ= 275/302). Component H tracked humic acids of primarily plant origin, H tracked weathered/oxidised humics and the "building block" fraction measured by LC-OCD, while P and P tracked amino acids in the "low molecular weight neutrals" LC-OCD fraction. Ratios between PARAFAC components predicted DOC removal at lab scale for French rivers in standardized tests involving coagulation, powdered activated carbon (PAC), chlorination, ion exchange (IEX), and ozonation, alone and in combination. The ratio H/H, for convenience named "PARIX" standing for "PARAFAC index", predicted SUVA according to a simple relationship: SUVA = 4.0 x PARIX (RMSEp=0.55) Lmgm. These results expand the utility of fluorescence spectroscopy in water treatment applications, by demonstrating the existence of previously unknown relationships between fluorescence composition, aromaticity and treatability that appear to hold across diverse surface waters at various stages of drinking water treatment.

摘要

利用来自欧洲、非洲、亚洲和美国的 55 个地表水水源样本和 25 个饮用水处理厂的样本,分析全球地表水的荧光组成,并从荧光激发-发射矩阵预测芳香性和可处理性。通过平行因子分析(PARAFAC)确定了数据集中的九个潜在荧光成分,并且可以根据成分 H(λ/λ=395/521)、H(λ/λ=330/404)、P、(λ/λ=290/365)和 P(λ/λ=275/302)之间的比值预测芳香性和可处理性的差异。成分 H 追踪主要来自植物的腐殖酸,H 追踪风化/氧化的腐殖质和通过 LC-OCD 测量的“构建块”部分,而 P 和 P 追踪 LC-OCD 部分“低分子量中性物”中的氨基酸。PARAFAC 成分之间的比值预测了法国河流在标准化测试中的 DOC 去除率,这些测试涉及混凝、粉末活性炭(PAC)、氯化、离子交换(IEX)和臭氧单独及组合的情况。为了方便起见,PARAFAC 成分之间的比值 H/H 命名为“PARIX”,代表“PARAFAC 指数”,根据简单的关系预测 SUVA:SUVA=4.0 x PARIX(RMSEp=0.55)Lmgm。这些结果扩展了荧光光谱法在水处理应用中的用途,通过证明在不同的地表水水源和饮用水处理的各个阶段之间存在以前未知的荧光组成、芳香性和可处理性之间的关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验