Suppr超能文献

地球构造碳输送带的演变

Evolution of Earth's tectonic carbon conveyor belt.

作者信息

Müller R Dietmar, Mather Ben, Dutkiewicz Adriana, Keller Tobias, Merdith Andrew, Gonzalez Christopher M, Gorczyk Weronika, Zahirovic Sabin

机构信息

EarthByte Group, School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia.

School of Geographical and Earth Sciences, University of Glasgow, Glasgow, Scotland.

出版信息

Nature. 2022 May;605(7911):629-639. doi: 10.1038/s41586-022-04420-x. Epub 2022 May 25.

Abstract

Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate tectonics. Our understanding of its modern functioning is underpinned by direct observations, but its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change. Triassic-Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-speed plate tectonics. The associated 'carbon subduction superflux' into the subcontinental mantle may have sparked North American diamond formation. In the Cenozoic era, continental collisions slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate sediments emerged as the Earth's largest carbon sink. Subduction and devolatilization of this reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate weathering flux to draw down atmospheric carbon dioxide, challenging previous views and providing boundary conditions for future carbon cycle models.

摘要

在海洋深处隐藏着一条由板块构造驱动的碳输送带。我们对其现代功能的理解基于直接观测,但对其随时间的变化情况却知之甚少。在这里,我们利用热力学模型重建了海洋板块碳储库,并追踪俯冲碳的去向。在中生代,即2.5亿至6600万年前,板块构造过程在推动气候变化方面发挥了关键作用。三叠纪 - 侏罗纪时期的降温与固体地球排气量的减少相关,而白垩纪时期的温室条件则与高速板块构造驱动的排气量翻倍有关。相关的“碳俯冲超通量”进入次大陆地幔可能引发了北美钻石的形成。在新生代,大陆碰撞减缓了海底扩张,减少了构造驱动的排气量,而深海碳酸盐沉积物成为地球上最大的碳汇。该储库在火山弧下方的俯冲和脱挥发分作用导致新生代碳排气量增加,在2000万年前超过大洋中脊成为碳排放的主要来源。新生代降温期间固体地球碳排放的增加需要大陆硅酸盐风化通量增加以消耗大气中的二氧化碳,这挑战了以往的观点,并为未来的碳循环模型提供了边界条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验