Suppr超能文献

反风化作用作为长期稳定海洋 pH 值和行星气候的因素。

Reverse weathering as a long-term stabilizer of marine pH and planetary climate.

机构信息

Department of Geology and Geophysics, Yale University, New Haven, CT, USA.

出版信息

Nature. 2018 Aug;560(7719):471-475. doi: 10.1038/s41586-018-0408-4. Epub 2018 Aug 8.

Abstract

For the first four billion years of Earth's history, climate was marked by apparent stability and warmth despite the Sun having lower luminosity. Proposed mechanisms for maintaining an elevated partial pressure of carbon dioxide in the atmosphere ([Formula: see text]) centre on a reduction in the weatherability of Earth's crust and therefore in the efficiency of carbon dioxide removal from the atmosphere. However, the effectiveness of these mechanisms remains debated. Here we use a global carbon cycle model to explore the evolution of processes that govern marine pH, a factor that regulates the partitioning of carbon between the ocean and the atmosphere. We find that elevated rates of 'reverse weathering'-that is, the consumption of alkalinity and generation of acidity during marine authigenic clay formation-enhanced the retention of carbon within the ocean-atmosphere system, leading to an elevated [Formula: see text] baseline. Although this process is dampened by sluggish kinetics today, we propose that more prolific rates of reverse weathering would have persisted under the pervasively silica-rich conditions that dominated Earth's early oceans. This distinct ocean and coupled carbon-silicon cycle state would have successfully maintained the equable and ice-free environment that characterized most of the Precambrian period. Further, we propose that during this time, the establishment of a strong negative feedback between marine pH and authigenic clay formation would have also enhanced climate stability by mitigating large swings in [Formula: see text]-a critical component of Earth's natural thermostat that would have been dominant for most of Earth's history. We speculate that the late ecological rise of siliceous organisms and a resulting decline in silica-rich conditions dampened the reverse weathering buffer, destabilizing Earth's climate system and lowering baseline [Formula: see text].

摘要

在地球历史的头四十亿年里,尽管太阳的光度较低,但气候明显稳定且温暖。维持大气中二氧化碳分压升高的提议机制([Formula: see text])集中在降低地球地壳的风化性上,因此降低了从大气中去除二氧化碳的效率。然而,这些机制的有效性仍存在争议。在这里,我们使用一个全球碳循环模型来探索控制海洋 pH 值的过程的演化,海洋 pH 值是调节碳在海洋和大气之间分配的一个因素。我们发现,提高“反向风化”的速率——即在海洋自生粘土形成过程中消耗碱度并产生酸度——增强了海洋-大气系统中碳的保留,导致[Formula: see text]基线升高。尽管今天这个过程的动力学很慢,但我们提出,在早期地球海洋普遍富含硅的条件下,更高的反向风化速率将持续存在。这种独特的海洋和耦合的碳-硅循环状态将成功地维持了大部分前寒武纪时期的均衡和无冰环境。此外,我们提出,在这段时间内,海洋 pH 值和自生粘土形成之间的强负反馈机制的建立,通过减轻[Formula: see text]的大幅波动,也增强了气候稳定性,[Formula: see text]是地球自然恒温器的一个关键组成部分,在地球历史的大部分时间里都占主导地位。我们推测,硅质生物的后期生态兴起和富含硅的条件的相应减少削弱了反向风化缓冲,使地球气候系统不稳定,并降低了基线[Formula: see text]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验