Suppr超能文献

基于深度多层感知器的电动汽车锂离子电池荷电状态估计

SOC Estimation of Lithium-Ion Battery for Electric Vehicle Based on Deep Multilayer Perceptron.

作者信息

Li Xueguang, Jiang Haizhou, Guo Sufen, Xu Jingxiu, Li Meiyan, Liu Xiaoyan, Zhang Xusong

机构信息

China Research Institute of Radiowave Propagation, Xinxiang, Henan Province 453000, China.

School of Fine Arts, Xinxiang University, Xinxiang, Henan Province 453000, China.

出版信息

Comput Intell Neurosci. 2022 May 16;2022:3920317. doi: 10.1155/2022/3920317. eCollection 2022.

Abstract

The state of charge (SOC) is one of the main indexes of the lithium-ion battery, which affects the practice range of new energy vehicles and the safety of the battery. Nevertheless, the value of SOC cannot be measured directly. At present, the algorithm for estimating the state of charge is not very satisfactory. The multilayer perceptron algorithm designed during this paper encompasses a sensible impact on state estimation. During this paper, the multilayer network is designed to estimate the charged state of lithium batteries from the three-layer artificial neural network to the eleven-layer artificial neural network. After preprocessing the dataset and comparing several activation functions, the ten-layer fully connected neural network is the most efficient to estimate the SOC. In order to prevent over-fitting of the multilayer perceptron algorithm, the two techniques of the BatchNormalization layer and Dropout layer work together to inhibit over-fitting. At the same time, the accuracy of extended Kalman filter, long and short memory network, and recurrent neural network are compared. The multilayer perceptron network designed during this paper has the highest accuracy. Finally, in the open dataset, both the training and test errors achieve good results. The algorithm developed in this paper has made some progress in SOC estimation.

摘要

荷电状态(SOC)是锂离子电池的主要指标之一,它影响着新能源汽车的实际续航里程和电池安全性。然而,SOC的值无法直接测量。目前,用于估计荷电状态的算法并不十分令人满意。本文设计的多层感知器算法对状态估计有显著影响。本文将多层网络从三层人工神经网络设计到十一层人工神经网络,用于估计锂电池的荷电状态。在对数据集进行预处理并比较几种激活函数后,十层全连接神经网络在估计SOC方面效率最高。为防止多层感知器算法出现过拟合,批归一化层和随机失活层这两种技术共同作用以抑制过拟合。同时,比较了扩展卡尔曼滤波器、长短期记忆网络和递归神经网络的准确性。本文设计的多层感知器网络具有最高的准确性。最后,在开放数据集中,训练误差和测试误差均取得了良好的结果。本文开发的算法在SOC估计方面取得了一定进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/928c/9126684/6e3e4b183c45/CIN2022-3920317.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验