Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
ACS Chem Biol. 2022 Jun 17;17(6):1524-1533. doi: 10.1021/acschembio.2c00204. Epub 2022 May 26.
Postgenomic analysis manifested that filamentous fungi contain numerous natural product biosynthetic gene clusters in their genome, yet most clusters remain cryptic or down-regulated. Herein, we report the successful manipulation of strain sp. CPCC 400735 that enables its genetic engineering via targeted overexpression of pathway-specific transcriptional regulator AspE. The down-regulated metabolic pathway encoded by the biosynthetic gene cluster was successfully up-activated. Analyses of mutant -OE:: extracts led to isolation and characterization of 13 asperphenalenone derivatives, of which 11 of them are new compounds. All of the asperphenalenones exhibited conspicuous anti-influenza A virus effects with IC values of 0.45-2.22 μM. Additionally, their identification provided insight into biosynthesis of asperphenalenones and might benefit studies of downstream combinatorial biosynthesis. Our study further demonstrates the effective application of targeted overexpressing pathway-specific activator and novel metabolite discovery in microorganisms. These will accelerate the exploitation of the untapped resources and biosynthetic capability in filamentous fungi.
后基因组分析表明,丝状真菌在其基因组中含有大量天然产物生物合成基因簇,但大多数簇仍然是隐匿的或下调的。在此,我们报告了成功操纵菌株 sp. CPCC 400735 的方法,通过靶向过表达途径特异性转录调节剂 AspE 来实现其基因工程。生物合成基因簇编码的下调代谢途径被成功激活。对突变体 -OE::提取物的分析导致了 13 种asperphenalenone 衍生物的分离和表征,其中 11 种为新化合物。所有的 asperphenalenones 都表现出明显的抗流感 A 病毒作用,IC 值为 0.45-2.22 μM。此外,它们的鉴定为 asperphenalenones 的生物合成提供了深入的了解,并可能有助于下游组合生物合成的研究。我们的研究进一步证明了靶向过表达途径特异性激活剂和新代谢产物在微生物中的有效应用,这将加速对丝状真菌中未开发资源和生物合成能力的开发利用。