Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
Microb Cell Fact. 2022 Nov 24;21(1):249. doi: 10.1186/s12934-022-01975-2.
Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996.
The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities.
Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.
基因组分析表明,子囊菌的基因组可能携带数十个生物合成基因簇(BGCs),但许多簇仍然是谜。子囊菌属的节丛孢菌属于盘菌科,无处不在,它可以定殖于不同类型的基质上,并与叶状体或腐烂的植物有关。该属的物种是生物活性物质的丰富生产者。作为生物合成上独特的甘露糖基四聚体,epicoccamides 于 2003 年首次从节丛孢菌属分离得到。在这项研究中,我们采用了基因组挖掘、化学鉴定、基因缺失和生物信息学分析相结合的方法,鉴定了负责节丛孢菌 CPCC 400996 中 epicoccamide A 生物合成的必需 BGC epi。
通过基于 AntiSMASH 的基因组挖掘,从内生真菌节丛孢菌 CPCC 400996 中获得了非常规生物合成基因簇 epi。该簇 epi 共包含六个推定的开放阅读框(epiA-epiF),其中 epiA 编码四聚体形成聚酮合酶和非核糖体肽合酶(PKS-NRPS 杂合)。通过与真菌四聚体其他代谢途径的序列比对和生物信息学分析,我们提出该基因簇 epi 可能参与 epicoccamides 的生成。epiA 的基因敲除完全消除了 epicoccamide A(1)的生物合成,从而建立了 BGC epi 与 epicoccamide A 生物合成之间的相关性。EpiA 和其他真菌 PKS-NRPS(NRPS)的腺苷酸结构域特征分析表明,EpiA 是 L-丙氨酸掺入四聚体 megasynthase。此外,基于 epicoccamide A 的分子结构和推测的基因簇 epi 的功能,提出了化合物 1 生物合成的假设代谢途径。在 epicoccamide A 生物合成过程中释放的相应四聚体通过 Dieckmann 型环化反应进行催化,其中 EpiA 末端模块中的还原性(R)结构域完成了转化。这些结果揭示了 epicoccamides 生物合成的潜在机制,这些发现可能为 epicoccamides 的衍生化或新化学实体的产生提供机会。
基因组挖掘和遗传失活实验揭示了一个以前未被描述的 PKS-NRPS 杂合基因簇 epi,它负责内生真菌节丛孢菌 CPCC 400996 中 epicoccamide A(1)的产生。此外,基于基因簇数据,提出了 epicoccamide A 的假设生物合成途径。