Suppr超能文献

利用 Banff-Human 器官移植小组的基因开发的去中心化肾移植活检排斥反应分类器。

A Decentralized Kidney Transplant Biopsy Classifier for Transplant Rejection Developed Using Genes of the Banff-Human Organ Transplant Panel.

机构信息

Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

出版信息

Front Immunol. 2022 May 10;13:841519. doi: 10.3389/fimmu.2022.841519. eCollection 2022.

Abstract

INTRODUCTION

A decentralized and multi-platform-compatible molecular diagnostic tool for kidney transplant biopsies could improve the dissemination and exploitation of this technology, increasing its clinical impact. As a first step towards this molecular diagnostic tool, we developed and validated a classifier using the genes of the Banff-Human Organ Transplant (B-HOT) panel extracted from a historical Molecular Microscope Diagnostic system microarray dataset. Furthermore, we evaluated the discriminative power of the B-HOT panel in a clinical scenario.

MATERIALS AND METHODS

Gene expression data from 1,181 kidney transplant biopsies were used as training data for three random forest models to predict kidney transplant biopsy Banff categories, including non-rejection (NR), antibody-mediated rejection (ABMR), and T-cell-mediated rejection (TCMR). Performance was evaluated using nested cross-validation. The three models used different sets of input features: the first model (B-HOT Model) was trained on only the genes included in the B-HOT panel, the second model (Feature Selection Model) was based on sequential forward feature selection from all available genes, and the third model (B-HOT+ Model) was based on the combination of the two models, i.e. B-HOT panel genes plus highly predictive genes from the sequential forward feature selection. After performance assessment on cross-validation, the best-performing model was validated on an external independent dataset based on a different microarray version.

RESULTS

The best performances were achieved by the B-HOT+ Model, a multilabel random forest model trained on B-HOT panel genes with the addition of the 6 most predictive genes of the Feature Selection Model (, , , , , and ), with a mean accuracy of 92.1% during cross-validation. On the validation set, the same model achieved Area Under the ROC Curve (AUC) of 0.965 and 0.982 for NR and ABMR respectively.

DISCUSSION

This kidney transplant biopsy classifier is one step closer to the development of a decentralized kidney transplant biopsy classifier that is effective on data derived from different gene expression platforms. The B-HOT panel proved to be a reliable highly-predictive panel for kidney transplant rejection classification. Furthermore, we propose to include the aforementioned 6 genes in the B-HOT panel for further optimization of this commercially available panel.

摘要

简介

一种去中心化且多平台兼容的肾移植活检分子诊断工具可以提高该技术的传播和利用,从而增加其临床影响。作为该分子诊断工具的第一步,我们使用来自历史 Molecular Microscope Diagnostic 系统微阵列数据集的 Banff-Human Organ Transplant(B-HOT)面板基因开发并验证了一个分类器。此外,我们在临床情况下评估了 B-HOT 面板的判别能力。

材料与方法

使用来自 1181 例肾移植活检的基因表达数据作为三个随机森林模型的训练数据,以预测肾移植活检 Banff 分类,包括非排斥(NR)、抗体介导的排斥(ABMR)和 T 细胞介导的排斥(TCMR)。使用嵌套交叉验证评估性能。三个模型使用不同的输入特征集:第一个模型(B-HOT 模型)仅基于 B-HOT 面板中包含的基因进行训练,第二个模型(特征选择模型)基于所有可用基因的顺序前向特征选择,第三个模型(B-HOT+模型)基于两个模型的组合,即 B-HOT 面板基因加上顺序前向特征选择中高预测性基因。在交叉验证后进行性能评估后,基于不同微阵列版本的外部独立数据集验证了表现最佳的模型。

结果

表现最佳的是 B-HOT+模型,这是一种多标签随机森林模型,基于 B-HOT 面板基因训练,外加特征选择模型中 6 个最具预测性的基因(、、、、、和),在交叉验证中平均准确率为 92.1%。在验证集中,相同的模型对 NR 和 ABMR 分别获得了 0.965 和 0.982 的 ROC 曲线下面积(AUC)。

讨论

这种肾移植活检分类器更接近于开发一种去中心化的肾移植活检分类器,该分类器可有效处理来自不同基因表达平台的数据。B-HOT 面板被证明是一种可靠的、高度可预测的肾移植排斥分类面板。此外,我们建议将上述 6 个基因纳入 B-HOT 面板,以进一步优化这个商业上可用的面板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85bd/9128066/0fb547d26b58/fimmu-13-841519-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验