Priatama Ryza A, Heo Jung, Kim Sung Hoon, Rajendran Sujeevan, Yoon Seoa, Jeong Dong-Hoon, Choo Young-Kug, Bae Jong Hyang, Kim Chul Min, Lee Yeon Hee, Demura Taku, Lee Young Koung, Choi Eun-Young, Han Chang-Deok, Park Soon Ju
Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea.
Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, South Korea.
Front Plant Sci. 2022 May 10;13:894545. doi: 10.3389/fpls.2022.894545. eCollection 2022.
Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized () in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of with semi-dwarf mutant ( or ) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.
水稻种植需要大量的水。此外,干旱频率增加和水资源短缺已成为全球水稻种植关注的问题。因此,优化水资源利用对可持续农业至关重要。在这里,我们对()在维管系统发育、水分运输、抗旱性和谷物产量方面进行了表征。我们将()与半矮秆突变体进行基因组合,以提供更高效用水的最佳水稻株型。在叶原基的维管束前体细胞中表达的()调节与碳水化合物代谢和细胞膨大相关的基因。因此,它在地上器官后生木质部膨大过程中发挥作用。()狭窄的后生木质部在晴天表现出叶片卷曲,并表现出耐旱性,但会降低成熟植株的谷物产量。然而,()与半矮秆突变体(或)的基因组合提供了最佳的水分供应和抗旱性,而不会影响灌浆率。我们的结果表明,通过优化后生木质部导管大小和株高,可以对水分利用和运输进行基因控制,这可用于增强耐旱性,并为应对未来更频繁的恶劣气候条件提供潜在解决方案。