Suppr超能文献

球腔菌属发酵代谢组学分析揭示了克服半纤维素水解抑制剂的机制。

Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors.

机构信息

Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil.

Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.

出版信息

Appl Microbiol Biotechnol. 2022 Jun;106(11):4075-4089. doi: 10.1007/s00253-022-11987-y. Epub 2022 May 27.

Abstract

Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L with a yield of 0.28 g g and productivity of 0.22 g L h, whereas maximum ethanol production in CH fermentation was 1.74 g L with a yield of 0.11 g g and productivity of 0.01 g L h. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.

摘要

理解耐受抑制剂的机制是开发用于工业第二代乙醇 (E2G) 生产的稳健酵母的第一步。在这里,我们使用超高效液相色谱串联质谱 (UHPLC-MS/MS) 和 MetaboAnalyst 4.0 分析 MS 数据,以检查在含有高或低水平抑制剂的半纤维素水解物(分别称为对照水解物或 CH 和策略水解物或 SH)早期发酵过程中酵母 Spathaspora passalidarum 的代谢谱变化。在 SH 的发酵过程中,最大乙醇产量为 16 g/L,产率为 0.28 g/g,生产率为 0.22 g/L/h,而在 CH 发酵过程中最大乙醇产量为 1.74 g/L,产率为 0.11 g/g,生产率为 0.01 g/L/h。CH 中高水平的抑制剂诱导了与 S. passalidarum 应激耐受相关的复杂生理和生化反应。这种酵母将具有醛基的化合物(羟甲基糠醛、糠醛、4-羟基苯甲醛、丁香醛和香草醛)转化为毒性较低的化合物,并且抑制剂被发现降低了细胞活力和乙醇产量。在细胞内,高水平的抑制剂改变了能量稳态和氧化还原平衡,导致 ATP 和 NADPH 水平降低,而糖酵解、戊糖磷酸和三羧酸 (TCA) 循环途径受影响最大,糖质氨基酸的分解代谢是细胞对抑制剂诱导的应激的主要反应。这项代谢组学研究揭示了用于代谢工程的有趣目标,使乙醇生产的工程菌株能够耐受多种抑制剂。 关键点: • 水解物中的抑制剂影响酵母的氧化还原平衡和能量状态。 • 抑制剂改变了糖酵解、戊糖磷酸、TCA 循环和氨基酸途径。 • S. passalidarum 将醛基转化为毒性较低的化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验