Suppr超能文献

对糠醛和乙酸抑制剂具有耐受性的产乙醇运动发酵单胞菌菌株的适应性实验室进化

Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

作者信息

Shui Zong-Xia, Qin Han, Wu Bo, Ruan Zhi-yong, Wang Lu-shang, Tan Fu-Rong, Wang Jing-Li, Tang Xiao-Yu, Dai Li-Chun, Hu Guo-Quan, He Ming-Xiong

机构信息

Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu, 610041, People's Republic of China.

出版信息

Appl Microbiol Biotechnol. 2015 Jul;99(13):5739-48. doi: 10.1007/s00253-015-6616-z. Epub 2015 May 3.

Abstract

Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

摘要

木质纤维素水解产物中的糠醛和乙酸是纤维素乙醇生产过程中对运动发酵单胞菌普遍存在的抑制剂。由于对其潜在分子机制了解不足,利用理性工程策略开发耐糠醛或乙酸抑制剂的菌株很困难。在本研究中,采用适应性实验室进化(ALE)策略来开发耐糠醛和乙酸的菌株。经过三轮进化,通过ALE方法成功获得了四个生长能力更强的进化突变体(ZMA7-2、ZMA7-3、ZMF3-2和ZMF3-3)。基于细胞生长、葡萄糖利用、乙醇产量和关键酶活性的分析结果,获得了两个理想菌株ZMA7-2和ZMF3-3,它们在7 g/l乙酸和3 g/l糠醛胁迫条件下表现出更高的耐受性。特别是,这是首次报道运动发酵单胞菌菌株能够耐受更高浓度的糠醛。最佳菌株运动发酵单胞菌ZMF3-3在3 g/l糠醛胁迫条件下的理论乙醇产量为94.84%,而ZM4的理论乙醇产量仅为9.89%。我们的研究还表明,ALE方法也可能用作运动发酵单胞菌代谢工程的强大代谢工程工具。此外,这两个最佳菌株可作为新型宿主用于纤维素乙醇或未来生物炼制中的进一步代谢工程。重要的是,这两个菌株还可作为“组学”水平遗传机制的新型耐受模式生物,这将为逆向代谢工程提供一些有用信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验