Abbas Mohammed H, Ramazani A, Montazer A H, Almasi Kashi M
Department of Physics, University of Kashan, Kashan 87317-51167, Iran.
Medical Physics Department, Al-Mustaqbal University College, Babylon, Iraq.
Nanotechnology. 2022 Jun 15;33(36). doi: 10.1088/1361-6528/ac7404.
From fast magnetic memories with low-power consumption to recording media with high densities, realizing the magnetization reversal and interaction of magnetic layers would allow for manipulating the ultimate properties. Here, we use a pulsed electrochemical deposition technique in porous alumina templates (50 nm in pore diameter) to fabricate arrays of nanowires, consisting of FeNi layers (26-227 nm in thickness) with disk to rod-shaped morphologies separated by ultra-thin (3 nm) Cu layers. By acquiring hysteresis curves and first-order reversal curves (FORCs) of the multilayer nanowire arrays, we comprehensively investigate magnetization reversal properties and magnetostatic interactions of the layers at different field angles (0° ≤≤ 90°). These involve the extraction of several parameters, including hysteresis curve coercivity (), FORC coercivity (), interaction field distribution width (Δ), and irreversible fraction of magnetization () as a function of. We find relatively constant and continuously decreasing trends ofwhen 0° ≤≤ 45°, and 45° < ≤ 90°, respectively. Meanwhile, angular dependence ofandshows continuously increasing and decreasing trends, irrespective of the FeNi layer morphology. Our FORC results indicate the magnetization reversal properties of the FeNi/Cu nanowires are accompanied with vortex domain wall and single vortex modes, especially at high field angles. The rod-shaped layers also induce maximum Δduring the reversal process, owing to enhancements in both magnetizing and demagnetizing-type magnetostatic interactions.
从低功耗的快速磁存储器到高密度记录介质,实现磁性层的磁化反转和相互作用将有助于操控其极限性能。在此,我们采用脉冲电化学沉积技术,在孔径为50纳米的多孔氧化铝模板中制备纳米线阵列,该阵列由厚度为26 - 227纳米的FeNi层组成,其形态从盘状到棒状,中间隔着3纳米厚的超薄铜层。通过获取多层纳米线阵列的磁滞回线和一阶反转曲线(FORCs),我们全面研究了不同场角(0°≤≤90°)下各层的磁化反转特性和静磁相互作用。这涉及到几个参数的提取,包括磁滞回线矫顽力()、FORC矫顽力()、相互作用场分布宽度(Δ)以及作为函数的不可逆磁化分数()。我们发现,当0°≤≤45°和45°<≤90°时,分别呈现出相对恒定和持续下降的趋势。同时,和的角度依赖性分别呈现出持续增加和下降的趋势,与FeNi层的形态无关。我们的FORC结果表明,FeNi/Cu纳米线的磁化反转特性伴随着涡旋畴壁和单涡旋模式,尤其是在高场角时。棒状层在反转过程中也会引起最大的Δ,这是由于磁化型和退磁型静磁相互作用都增强了。