Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.
Department of Chemistry, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7, Canada.
Trends Microbiol. 2022 Nov;30(11):1072-1083. doi: 10.1016/j.tim.2022.05.005. Epub 2022 May 24.
Pyrite (FeS) is the most abundant iron sulfide mineral in Earth's crust. Until recently, FeS has been considered a sink for iron (Fe) and sulfur (S) at low temperature in the absence of oxygen or oxidative weathering, making these elements unavailable to biology. However, anaerobic methanogens can transfer electrons extracellularly to reduce FeS via direct contact with the mineral. Reduction of FeS occurs through a multistep process that generates aqueous sulfide (HS) and FeS-associated pyrrhotite (FeS). Subsequent dissolution of FeS provides Fe(II), but not HS, that rapidly complexes with HS generated from FeS reduction to form soluble iron sulfur clusters [nFeS]. Cells assimilate nFeS to meet Fe/S nutritional demands by mobilizing and hyperaccumulating Fe and S from FeS. As such, reductive dissolution of FeS by methanogens has important implications for element cycling in anoxic habitats, both today and in the geologic past.
黄铁矿 (FeS) 是地壳中最丰富的硫化亚铁矿物。直到最近,FeS 一直被认为是在缺氧或无氧化风化条件下低温下铁 (Fe) 和硫 (S) 的汇,使这些元素对生物不可用。然而,产甲烷菌可以通过与矿物的直接接触,从细胞外转移电子来还原 FeS。FeS 的还原通过多步过程发生,生成水合硫化物 (HS) 和与 FeS 相关的磁黄铁矿 (FeS)。随后 FeS 的溶解提供了 Fe(II),而不是 HS,它会迅速与来自 FeS 还原生成的 HS 形成可溶性铁硫簇 [nFeS]。细胞通过从 FeS 中动员和超积累 Fe 和 S 来满足 Fe/S 的营养需求,从而同化 nFeS。因此,产甲烷菌对 FeS 的还原溶解对缺氧环境中的元素循环具有重要意义,无论是在今天还是在地质过去。