MicroNanoBio, 40479 Düsseldorf, Germany.
Institute of Nano- and Biotechnologies, FH Aachen, 52428 Jülich, Germany.
Biosensors (Basel). 2022 May 13;12(5):334. doi: 10.3390/bios12050334.
Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (-) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the - curves and the ConCap signals was also studied experimentally on Al-p-Si-SiO EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.
纳米粒子被认为是极具吸引力的可调材料,可用于设计具有增强性能的场效应生物传感器。在这项工作中,我们提出了一种带有配体稳定带电金纳米粒子的电解质-绝缘体-半导体电容器 (EISCAP) 的理论模型。带电的 AuNP 被视为额外的纳米级局部门。AuNP 修饰的 EISCAP 的电容-电压 (-) 曲线和恒电容 (ConCap) 信号已被模拟。AuNP 覆盖率对 - 曲线和 ConCap 信号的偏移的影响也在带有正电荷氨辛硫醇封端的 AuNP 的 Al-p-Si-SiO EISCAP 上进行了实验研究。此外,通过扫描电子显微镜对 AuNP 修饰的 EISCAP 进行了不同的纳米粒子固定时间的表面特性进行了表征。