Avila-Barrientos Luis Pablo, Cofas-Vargas Luis Fernando, Agüero-Chapin Guillermin, Hernández-García Enrique, Ruiz-Carmona Sergio, Valdez-Cruz Norma A, Trujillo-Roldán Mauricio, Weber Joachim, Ruiz-Blanco Yasser B, Barril Xavier, García-Hernández Enrique
Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
Antibiotics (Basel). 2022 Apr 22;11(5):557. doi: 10.3390/antibiotics11050557.
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
随着多重耐药菌的不断增长,迫切需要寻找新的治疗靶点,开发具有新型杀菌作用模式的药物。F₀F₁-ATP合酶在细菌生物能量过程中起着关键作用,已成为一个有吸引力的抗菌靶点,一种治疗多重耐药结核病的抑制剂已获药物批准,这证实了该靶点的有效性。在这项工作中,我们旨在通过两种计算机模拟策略,设计ATP合酶的新型变构抑制剂,靶向催化β亚基,它是转子亚基与催化位点之间通讯的核心,以驱动旋转机制。作为模型系统,我们使用了大肠杆菌的F₁部分,大肠杆菌是多重耐药病原体优先名单中的一种细菌。分别通过分子动力学模拟和序列挖掘方法设计的类药物分子和一种源自IF1的肽,对F₁表现出体外微摩尔级别的抑制效力。对β亚基C末端结构域关键结构螺旋-转角-转角基序的细菌和哺乳动物序列分析揭示了高度和中度保守的位置,可用于开发新的物种特异性变构抑制剂。据我们所知,这些抑制剂是首次通过计算机设计针对F₀F₁-ATP合酶催化亚基的结合剂。