Suppr超能文献

通过随机森林回归评估与肿瘤纯度相关的微小RNA

Assessment of MicroRNAs Associated with Tumor Purity by Random Forest Regression.

作者信息

Nam Dong-Yeon, Rhee Je-Keun

机构信息

School of Systems Biomedical Science, Soongsil University, Seoul 06987, Korea.

出版信息

Biology (Basel). 2022 May 21;11(5):787. doi: 10.3390/biology11050787.

Abstract

Tumor purity refers to the proportion of tumor cells in tumor tissue samples. This value plays an important role in understanding the mechanisms of the tumor microenvironment. Although various attempts have been made to predict tumor purity, attempts to predict tumor purity using miRNAs are still lacking. We predicted tumor purity using miRNA expression data for 16 TCGA tumor types using random forest regression. In addition, we identified miRNAs with high feature-importance scores and examined the extent of the change in predictive performance using informative miRNAs. The predictive performance obtained using only 10 miRNAs with high feature importance was close to the result obtained using all miRNAs. Furthermore, we also found genes targeted by miRNAs and confirmed that these genes were mainly related to immune and cancer pathways. Therefore, we found that the miRNA expression data could predict tumor purity well, and the results suggested the possibility that 10 miRNAs with high feature importance could be used as potential markers to predict tumor purity and to help improve our understanding of the tumor microenvironment.

摘要

肿瘤纯度是指肿瘤组织样本中肿瘤细胞的比例。该值在理解肿瘤微环境机制方面起着重要作用。尽管已经进行了各种尝试来预测肿瘤纯度,但利用微小RNA(miRNA)预测肿瘤纯度的尝试仍然缺乏。我们使用随机森林回归,基于16种TCGA肿瘤类型的miRNA表达数据预测肿瘤纯度。此外,我们鉴定了具有高特征重要性得分的miRNA,并使用信息丰富的miRNA检验了预测性能的变化程度。仅使用10个具有高特征重要性的miRNA所获得的预测性能接近使用所有miRNA所得到的结果。此外,我们还发现了miRNA靶向的基因,并证实这些基因主要与免疫和癌症通路相关。因此,我们发现miRNA表达数据能够很好地预测肿瘤纯度,结果表明10个具有高特征重要性的miRNA有可能作为预测肿瘤纯度的潜在标志物,并有助于增进我们对肿瘤微环境的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验