Alonso-González Carolina, González-Abalde Cristina, Menéndez-Menéndez Javier, González-González Alicia, Álvarez-García Virginia, González-Cabeza Alicia, Martínez-Campa Carlos, Cos Samuel
Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain.
Biomedicines. 2022 May 7;10(5):1088. doi: 10.3390/biomedicines10051088.
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
放射治疗是癌症患者癌症治疗计划的重要组成部分,尽管它会引起许多有害影响。使用辅助分子旨在限制周围正常组织的损伤,并增强放射治疗的效果,无论是杀死肿瘤细胞还是减缓其生长。褪黑素是松果体释放的一种吲哚胺,在乳腺癌中表现为放射增敏剂,因为它能增强电离辐射的治疗效果并减轻对正常细胞的副作用。然而,褪黑素调节放疗引发的分子变化的分子机制大多仍不清楚。在此,我们报告褪黑素增强了辐射对MCF-7细胞的抗增殖作用。电离辐射处理诱导了许多基因表达的变化。在总共25个因辐射而改变的基因中,褪黑素增强了其中13个基因的变化,而在另外10个案例中这种作用则被逆转。其中,褪黑素提高了PTEN和NME1的水平,并降低了SNAI2、ERBB2、AKT、SERPINE1、SFN、PLAU、ATM和N3RC1的水平。我们还分析了几种微小RNA的表达,发现褪黑素增强了辐射对miR-20a、miR-19a、miR-93、miR-20b和miR-29a水平的影响。相当令人惊讶的是,辐射诱导了miR-17、miR-141和miR-15a的表达,但在辐射前进行褪黑素处理抵消了这种刺激作用。单独的辐射增强了抑癌基因miR-34a的表达,而褪黑素强烈刺激了这种作用。褪黑素进一步增强了辐射介导的对Akt的抑制。最后,在体内试验中,褪黑素与电离辐射联合抑制了新血管形成。我们的结果证实,褪黑素在MCF-7细胞中阻断了电离辐射的许多不良影响,并增强了导致优化治疗结果的变化。本文强调了褪黑素在乳腺癌中作为放射增敏剂和辐射防护剂的有效性。褪黑素是放疗的有效辅助分子,在癌症治疗中促进抗癌治疗效果。褪黑素调节因辐射而改变的分子途径,其在临床上的应用可能通过增强癌细胞对辐射的敏感性并总体上逆转其对当前应用治疗方式的抗性而导致改善治疗结果。