Suppr超能文献

控制与推理:利用网络控制揭示对手行为

Control Meets Inference: Using Network Control to Uncover the Behaviour of Opponents.

作者信息

Cai Zhongqi, Gerding Enrico, Brede Markus

机构信息

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.

出版信息

Entropy (Basel). 2022 May 2;24(5):640. doi: 10.3390/e24050640.

Abstract

Using observational data to infer the coupling structure or parameters in dynamical systems is important in many real-world applications. In this paper, we propose a framework of strategically influencing a dynamical process that generates observations with the aim of making hidden parameters more easily inferable. More specifically, we consider a model of networked agents who exchange opinions subject to voting dynamics. Agent dynamics are subject to peer influence and to the influence of two controllers. One of these controllers is treated as passive and we presume its influence is unknown. We then consider a scenario in which the other active controller attempts to infer the passive controller's influence from observations. Moreover, we explore how the active controller can strategically deploy its own influence to manipulate the dynamics with the aim of accelerating the convergence of its estimates of the opponent. Along with benchmark cases we propose two heuristic algorithms for designing optimal influence allocations. We establish that the proposed algorithms accelerate the inference process by strategically interacting with the network dynamics. Investigating configurations in which optimal control is deployed. We first find that agents with higher degrees and larger opponent allocations are harder to predict. Second, even factoring in strategical allocations, opponent's influence is typically the harder to predict the more degree-heterogeneous the social network.

摘要

在许多实际应用中,利用观测数据推断动力系统中的耦合结构或参数非常重要。在本文中,我们提出了一个框架,通过策略性地影响生成观测数据的动力过程,使隐藏参数更易于推断。具体而言,我们考虑一个网络代理模型,这些代理根据投票动态交换意见。代理动态受到同伴影响以及两个控制器的影响。其中一个控制器被视为被动的,我们假定其影响是未知的。然后,我们考虑另一个主动控制器试图从观测数据中推断被动控制器影响的场景。此外,我们探讨主动控制器如何策略性地部署自身影响来操纵动态过程,以加速其对对手估计的收敛。除了基准案例,我们还提出了两种启发式算法来设计最优影响分配。我们证明,所提出的算法通过与网络动态进行策略性交互来加速推断过程。研究部署最优控制的配置情况。我们首先发现,度较高且对手分配较大的代理更难预测。其次,即使考虑策略性分配,社会网络的度异质性越高,对手的影响通常就越难预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b0/9140578/6115f894fc6e/entropy-24-00640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验