Suppr超能文献

突发医疗事件调用分析用于疫情爆发期间的趋势预测:意大利拉齐奥地区 2020-2021 年 COVID-19 疫情的中断时间序列分析。

Emergency Medical Services Calls Analysis for Trend Prediction during Epidemic Outbreaks: Interrupted Time Series Analysis on 2020-2021 COVID-19 Epidemic in Lazio, Italy.

机构信息

Local Health Authority "Roma 1", 00193 Rome, Italy.

Azienda Regionale Emergenza Sanitaria ARES 118, 00149 Rome, Italy.

出版信息

Int J Environ Res Public Health. 2022 May 13;19(10):5951. doi: 10.3390/ijerph19105951.

Abstract

(1) Background: During the COVID-19 outbreak in the Lazio region, a surge in emergency medical service (EMS) calls has been observed. The objective of present study is to investigate if there is any correlation between the variation in numbers of daily EMS calls, and the short-term evolution of the epidemic wave. (2) Methods: Data from the COVID-19 outbreak has been retrieved in order to draw the epidemic curve in the Lazio region. Data from EMS calls has been used in order to determine Excess of Calls (ExCa) in the 2020−2021 years, compared to the year 2019 (baseline). Multiple linear regression models have been run between ExCa and the first-order derivative (D’) of the epidemic wave in time, each regression model anticipating the epidemic progression (up to 14 days), in order to probe a correlation between the variables. (3) Results: EMS calls variation from baseline is correlated with the slope of the curve of ICU admissions, with the most fitting value found at 7 days (R2 0.33, p < 0.001). (4) Conclusions: EMS calls deviation from baseline allows public health services to predict short-term epidemic trends in COVID-19 outbreaks, and can be used as validation of current data, or as an independent estimator of future trends.

摘要

(1) 背景:在 COVID-19 爆发期间,拉齐奥地区的紧急医疗服务(EMS)呼叫量激增。本研究的目的是调查每日 EMS 呼叫数量的变化与疫情波短期演变之间是否存在任何关联。(2) 方法:为了绘制拉齐奥地区的疫情曲线,检索了 COVID-19 爆发的数据。为了确定 2020-2021 年与 2019 年(基线)相比,EMS 呼叫的超额呼叫(ExCa),使用了 EMS 呼叫的数据。运行了多个线性回归模型,将 ExCa 与时间上的疫情波的一阶导数(D')之间进行回归,每个回归模型预测疫情进展(最多 14 天),以探究变量之间的相关性。(3) 结果:与 ICU 入院曲线的斜率相比,EMS 呼叫的变化与基线相比是相关的,在第 7 天发现最拟合的值(R2 0.33,p < 0.001)。(4) 结论:EMS 呼叫与基线的偏差使公共卫生服务部门能够预测 COVID-19 爆发的短期疫情趋势,并可作为当前数据的验证,或作为未来趋势的独立估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/597a/9140838/fb8e18340486/ijerph-19-05951-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验