Kong Shuying, Xiang Xinzhu, Jin Binbin, Guo Xiaogang, Wang Huijun, Zhang Guoqing, Huang Huisheng, Cheng Kui
Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China.
College of Engineering, Northeast Agricultural University, Harbin 150030, China.
Nanomaterials (Basel). 2022 May 18;12(10):1720. doi: 10.3390/nano12101720.
High specific surface area, reasonable pore structure and heteroatom doping are beneficial to enhance charge storage, which all depend on the selection of precursors, activators and reasonable preparation methods. Here, B, O and N codoped biomass-derived hierarchical porous carbon was synthesized by using KCl/ZnCl as a combined activator and porogen and HBO as both boron source and porogen. Moreover, the cheap, environmentally friendly and heteroatom-rich laver was used as a precursor, and impregnation and freeze-drying methods were used to make the biological cells of laver have sufficient contact with the activator so that the layer was deeply activated. The as-prepared carbon materials exhibit high surface area (1514.3 m g), three-dimensional (3D) interconnected hierarchical porous structure and abundant heteroatom doping. The synergistic effects of these properties promote the obtained carbon materials with excellent specific capacitance (382.5 F g at 1 A g). The symmetric supercapacitor exhibits a maximum energy density of 29.2 W h kg at a power density of 250 W kg in 1 M NaSO, and the maximum energy density can reach to 51.3 W h kg at a power density of 250 W kg in 1 M BMIMBF/AN. Moreover, the as-prepared carbon materials as anode for lithium-ion batteries possess high reversible capacity of 1497 mA h g at 1 A g and outstanding cycling stability (no decay after 2000 cycles).
高比表面积、合理的孔结构和杂原子掺杂有利于增强电荷存储,而这一切都取决于前驱体、活化剂的选择以及合理的制备方法。在此,以KCl/ZnCl作为复合活化剂和致孔剂,以HBO作为硼源和致孔剂,合成了B、O和N共掺杂的生物质衍生分级多孔碳。此外,使用廉价、环保且富含杂原子的紫菜作为前驱体,并采用浸渍和冷冻干燥方法,使紫菜的生物细胞与活化剂充分接触,从而使紫菜层得到深度活化。所制备的碳材料具有高比表面积(1514.3 m²/g)、三维(3D)互连分级多孔结构以及丰富的杂原子掺杂。这些特性的协同作用促使所获得的碳材料具有优异的比电容(在1 A/g时为382.5 F/g)。该对称超级电容器在1 M Na₂SO₄中,功率密度为250 W/kg时,最大能量密度为29.2 W h/kg,在1 M BMIMBF₄/AN中,功率密度为250 W/kg时,最大能量密度可达51.3 W h/kg。此外,所制备的碳材料作为锂离子电池的阳极,在1 A/g时具有1497 mA h/g的高可逆容量和出色的循环稳定性(2000次循环后无衰减)。