Suppr超能文献

一种基于NiO/MoS/rGO复合材料的新型电化学传感器用于快速检测甲基对硫磷。

A novel electrochemical sensor based on NiO/MoS/rGO composite material for rapid detection of methyl parathion.

作者信息

Tan Chong, Liu Xueyan, Yang Kaijie, Li Junsheng, Yin Yuhong, Zuo Jinlong

机构信息

School of Food Engineering, Harbin University of Commerce, Harbin, 150028, PR China.

出版信息

Mikrochim Acta. 2025 Jun 23;192(7):444. doi: 10.1007/s00604-025-07280-0.

Abstract

A novel electrochemical sensor (NiO/MoS₂/rGO/GCE) designed for the sensitive detection of methyl parathion (MP) pesticide residues has been developed. The NiO/MoS₂/rGO composite was synthesized via hydrothermal and solvothermal methods, with successful formation and optimized microstructural characteristics validated through scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Empirical results demonstrated that the incorporation of NiO markedly augmented both the electrochemically active sites and electron-transfer efficiency, thereby enabling the sensor to achieve an excellent linear detection range of 0.01-10 μg/mL for MP, accompanied by a notably low detection limit of 1.1 ng/mL (S/N = 3). Furthermore, the sensor exhibited superior anti-interference performance, achieving recovery percentages ranging from 97.7 to 108.8% in practical sample analyses (apple juice), with relative standard deviations (RSD) between 2.7 and 5.2%. Overall, this research offers a promising and cost-effective approach for highly sensitive pesticide residue detection, underscoring its substantial potential for broad practical applications.

摘要

一种用于灵敏检测甲基对硫磷(MP)农药残留的新型电化学传感器(NiO/MoS₂/rGO/GCE)已被研制出来。通过水热法和溶剂热法合成了NiO/MoS₂/rGO复合材料,并通过扫描电子显微镜、X射线衍射和X射线光电子能谱验证了其成功形成及优化的微观结构特征。实验结果表明,NiO的加入显著增加了电化学活性位点和电子转移效率,从而使该传感器对MP实现了0.01 - 10 μg/mL的优异线性检测范围,同时检测限低至1.1 ng/mL(S/N = 3)。此外,该传感器表现出卓越的抗干扰性能,在实际样品(苹果汁)分析中的回收率为97.7%至108.8%,相对标准偏差(RSD)在2.7%至5.2%之间。总体而言,本研究为高灵敏农药残留检测提供了一种有前景且经济高效的方法,突显了其在广泛实际应用中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验