Ekanayaka Thilini K, Maity Krishna Prasad, Doudin Bernard, Dowben Peter A
Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, USA.
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg CNRS, UMR 7504, 23 Rue du Loess, BP 43, CEDEX 2, 67034 Strasbourg, France.
Nanomaterials (Basel). 2022 May 19;12(10):1742. doi: 10.3390/nano12101742.
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the "write" speed is an important criterion.
我们回顾了目前对基于过渡金属的自旋交叉(SCO)分子配合物中自旋态变化相关时间尺度和机制的理解。大多数通过光学技术进行的时间分辨实验依赖于这类材料固有的光致开关特性。光驱动的自旋态转变可由多种复杂因素的丰富相互作用介导,包括自旋态转变过程中的中间态,以及分子间相互作用、温度和应变。我们在此强调,将尺寸缩小至纳米尺度对于设计能够快速切换并可能保留光驱动态记忆的SCO系统至关重要。我们认为,SCO纳米尺寸系统是“写入”速度为重要标准的器件应用的关键。