Ridier Karl, Zhang Yuteng, Piedrahita-Bello Mario, Quintero Carlos M, Salmon Lionel, Molnár Gábor, Bergaud Christian, Bousseksou Azzedine
Laboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, Toulouse, F-31077, France.
Laboratoire d'Analyse et d'Architecture des Systèmes, CNRS UPR 8001, 7 avenue du Colonel Roche, Toulouse, F-31400, France.
Adv Mater. 2020 May;32(21):e2000987. doi: 10.1002/adma.202000987. Epub 2020 Apr 17.
The thermally induced spin-crossover (SCO) phenomenon in transition metal complexes is an entropy-driven process, which has been extensively studied through calorimetric methods. Yet, the excess heat capacity associated with the molecular spin-state switching has never been explored for practical applications. Herein, the thermal damping effect of an SCO film is experimentally assessed by monitoring the transient heating response of SCO-coated metallic microwires, Joule-heated by current pulses. A damping of the wire temperature, up to 10%, is evidenced on a time scale of tens of microseconds due to the spin-state switching of the molecular film. Fast heat-charging dynamics and negligible fatigability are demonstrated, which, together with the solid-solid nature of the spin transition, appear as promising features for achieving thermal energy management applications in functional devices.
过渡金属配合物中的热致自旋交叉(SCO)现象是一个熵驱动的过程,已通过量热法进行了广泛研究。然而,与分子自旋态切换相关的过量热容从未被探索用于实际应用。在此,通过监测由电流脉冲焦耳加热的涂有SCO的金属微丝的瞬态加热响应,对SCO薄膜的热阻尼效应进行了实验评估。由于分子薄膜的自旋态切换,在几十微秒的时间尺度上证明了导线温度有高达10%的阻尼。展示了快速的热充电动力学和可忽略不计的疲劳性,这与自旋转变的固-固性质一起,对于在功能器件中实现热能管理应用似乎是很有前景的特性。