The School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Sensors (Basel). 2022 May 11;22(10):3668. doi: 10.3390/s22103668.
This paper proposes a finite-time multi-modal robotic control strategy for physical human-robot interaction. The proposed multi-modal controller consists of a modified super-twisting-based finite-time control term that is designed in each interaction mode and a continuity-guaranteed control term. The finite-time control term guarantees finite-time achievement of the desired impedance dynamics in active interaction mode (AIM), makes the tracking error of the reference trajectory converge to zero in finite time in passive interaction mode (PIM), and also guarantees robotic motion stop in finite time in safety-stop mode (SSM). Meanwhile, the continuity-guaranteed control term guarantees control input continuity and steady interaction modes transition. The finite-time closed-loop control stability and the control effectiveness is validated by Lyapunov-based theoretical analysis and simulations on a robot manipulator.
本文提出了一种适用于物理人机交互的有限时间多模态机器人控制策略。所提出的多模态控制器由一个在每个交互模式下设计的改进的基于超螺旋的有限时间控制项和一个保证连续性的控制项组成。有限时间控制项保证了在主动交互模式(AIM)中期望阻抗动力学的有限时间实现,在被动交互模式(PIM)中使参考轨迹的跟踪误差在有限时间内收敛到零,并在安全停止模式(SSM)中保证机器人运动在有限时间内停止。同时,保证控制输入连续性和稳定交互模式转换的连续性控制项。通过在机器人操作臂上进行基于 Lyapunov 的理论分析和仿真,验证了有限时间闭环控制的稳定性和控制效果。