Modares Hamidreza, Ranatunga Isura, Lewis Frank L, Popa Dan O
IEEE Trans Cybern. 2016 Mar;46(3):655-67. doi: 10.1109/TCYB.2015.2412554. Epub 2015 Mar 24.
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
提出了一种具有可调节机器人行为的智能人机交互(HRI)系统。所提出的HRI系统帮助人类操作员以最小的工作量需求执行给定任务,并优化整体人机系统性能。受人为因素研究的启发,所提出的控制结构由两个控制回路组成。首先,在内环设计了一个特定于机器人的神经自适应控制器,以使未知的非线性机器人表现得像人类操作员所感知的规定机器人阻抗模型。与现有的基于神经网络和自适应阻抗的控制方法相比,内环不需要任务性能或规定机器人阻抗模型参数的信息。然后,设计了一个特定于任务的外环控制器,以找到规定机器人阻抗模型的最优参数,从而将机器人的动力学调整到操作员的技能水平,并最小化跟踪误差。外环包括人类操作员、机器人和任务性能细节。将寻找规定机器人阻抗模型最优参数的问题转化为一个线性二次调节器(LQR)问题,该问题可在给定任务中最小化人力并优化HRI系统的闭环行为。为了避免对人类模型知识的需求,使用积分强化学习来解决给定的LQR问题。在xy工作台和机器人手臂上的仿真结果以及在PR2机器人上的实验实现结果证实了所提方法的适用性。