Suppr超能文献

LAG:用于生成航空图像中目标检测更好的锚点的分层对象。

LAG: Layered Objects to Generate Better Anchors for Object Detection in Aerial Images.

机构信息

School of Software, Xinjiang University, Urumqi 830091, China.

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2022 May 20;22(10):3891. doi: 10.3390/s22103891.

Abstract

You Only Look Once (YOLO) series detectors are suitable for aerial image object detection because of their excellent real-time ability and performance. Their high performance depends heavily on the anchor generated by clustering the training set. However, the effectiveness of the general Anchor Generation algorithm is limited by the unique data distribution of the aerial image dataset. The divergence in the distribution of the number of objects with different sizes can cause the anchors to overfit some objects or be assigned to suboptimal layers because anchors of each layer are generated uniformly and affected by the overall data distribution. In this paper, we are inspired by experiments under different anchors settings and proposed the Layered Anchor Generation (LAG) algorithm. In the LAG, objects are layered by their diagonals, and then anchors of each layer are generated by analyzing the diagonals and aspect ratio of objects of the corresponding layer. In this way, anchors of each layer can better match the detection range of each layer. Experiment results showed that our algorithm is of good generality that significantly uprises the performance of You Only Look Once version 3 (YOLOv3), You Only Look Once version 5 (YOLOv5), You Only Learn One Representation (YOLOR), and Cascade Regions with CNN features (Cascade R-CNN) on the Vision Meets Drone (VisDrone) dataset and the object DetectIon in Optical Remote sensing images (DIOR) dataset, and these improvements are cost-free.

摘要

YOLO 系列探测器因其出色的实时能力和性能,非常适合航空图像目标检测。其高性能很大程度上依赖于通过聚类训练集生成的锚点。然而,一般的锚生成算法的有效性受到航空图像数据集独特数据分布的限制。不同大小目标数量分布的差异可能导致锚点过度拟合某些目标,或者被分配到次优的层,因为每个层的锚点都是均匀生成的,并且受到整体数据分布的影响。在本文中,我们受到不同锚点设置下的实验启发,提出了分层锚生成(LAG)算法。在 LAG 中,对象按对角线分层,然后通过分析对应层对象的对角线和纵横比来生成每层的锚点。这样,每层的锚点可以更好地匹配每层的检测范围。实验结果表明,我们的算法具有很好的通用性,在 Vision Meets Drone (VisDrone)数据集和光学遥感图像中的对象检测(DIOR)数据集上,显著提高了 YOLOv3、YOLOv5、YOLOR 和 Cascade Regions with CNN features (Cascade R-CNN)的性能,并且这些改进是免费的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e9/9144023/05b12202c488/sensors-22-03891-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验