Suppr超能文献

基于新的光谱混合的二进制分区树表示的高光谱图像分割。

Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation.

机构信息

Department Image and SignalGIPSA-Laboratory, Grenoble-INP, Saint Martin d'Heres Cedex, France.

Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain.

出版信息

IEEE Trans Image Process. 2014 Aug;23(8):3574-3589. doi: 10.1109/TIP.2014.2329767. Epub 2014 Jun 10.

Abstract

The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear spectral unmixing consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions.

摘要

二叉分区树 (BPT) 是一种基于图像的分层区域表示,以树状结构表示。BPT 允许用户在不同的分割尺度下探索图像。通常,为了得到更紧凑的表示,会对树进行修剪,从而使剩余节点构成给定任务的最佳分区。在这里,我们提出了一种新的基于光谱解混概念的高光谱图像 BPT 构建方法和修剪策略。线性光谱解混包括寻找图像中存在的材料(端元)的光谱特征及其在每个像素内的分数丰度。所提出的方法利用区域的局部解混来找到实现全局最小重建误差的分区。结果在具有不同上下文和分辨率的真实高光谱数据集上呈现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验